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ABSTRACT

We describe our system for Content-Based Copy Detection
(CBCD) task submitted to TRECVID 2010. Our system is
multi-modal and integrates the results of global visual fea-
tures, local visual features and audio features to produce the
final run results. Each of these features is designed to take
care of different aspects of the video transformations. We
submitted two runs each for BALANCED as well as NOFA
profile:

• KDDILabs-SRI.m.balanced.1

• KDDILabs-SRI.m.balanced.2

• KDDILabs-SRI.m.nofa.1

• KDDILabs-SRI.m.nofa.2

These runs all use the same CBCD framework for each of the
three modalities and differ only in the parameters for the final
integration step. Our CBCD framework has made significant
advances in video based copy detection. We introduce novel
algorithms to obtain robust results against various transforma-
tions: dense-sampling-based global SIFT features, improved
indexing methods for both global and local features and han-
dling temporal burstiness. TRECVID 2010 evaluation results
show that our system achieves good performance for both de-
tection accuracy especially on NOFA profile and localization
accuracy.

1. INTRODUCTION

In recent years, Content-Based Copy Detection (CBCD) tech-
nology, more generally referred to as digital fingerprinting,
has attracted considerable research attention. There are many
applications of CBCD technology such as detecting copyright
infringement on video sharing sites, content identification and
tracking, or query-by-example searches.

Given a test collection of videos and a set of queries, the
goal of the CBCD task in TRECVID is to determine for each
query the place, if any, that some part of the query occurs,
with possible transformations, in the test collection.
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Fig. 1: Framework of our CBCD system.

Figure 1 gives an overview of our CBCD system. Our sys-
tem runs global, local and audio based CBCD simultaneously
for each query. Each of the three modes produces results in-
dependently in the form of a reference video identifier, corre-
sponding timestamp offset, total score and frame-level scores.
The results of each of the modalities are integrated in a post-
processing stage to make the results reliable and accurate. We
fuse these results using a voting scheme that emphasizes re-
sults where at least two of the three modes are consistent.

The basic idea behind using multiple modalities for
CBCD task stems from the fact that each of these modes
work well for different transformations that are in some sense
complementary. While it is apparent that audio and video
have completely different and complementary properties, it is
also easy to see that global and local features have different
characteristicts: local features are robust even for geometric
transformations (T1, T2, T8, T10), while global features are
more robust for non-geometric (photometric) transformations
(T4, T5, T6). In addition, global features are much faster
to compute and will work well for all transformations with
small or no-change in geometry. Our audio features are sim-
ple and fast although we believe that their performance could
be greatly enhanced by a tighter integration with video and
use of more robust audio features.

In the following sections, we describe each of the three
modalities in some detail and finally discuss the integration
framework and evaluation results.
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Fig. 2: Overview of global feature based CBCD.

Image frame

Fig. 3: Two neighboring windows corresponding to a scale of 1/3
the width and height. The feature locations (shown as circles) are
such that the windows overlap 75% between the neighbors.

2. GLOBAL FEATURE BASED DETECTION

Figure 2 illustrates a functional diagram of our global feature
based CBCD scheme. Our global feature based detection re-
lies on dense sampling of the image at fixed locations. Our
global features are obtained by densely sampling the frame at
multiple fixed locations in the image. The scale of the fea-
tures dictates the window size to be used for computing the
descriptor at that feature location. We have used scales that
correspond to window sizes greater than or equal to one third
the total width or height.

For a given scale, feature locations are chosen such that
the neighbors in the x and y directions overlap at least 75%.
This results in a total of 121 windows although our approach
for TRECVID only used a subset of 40 such windows. Fig-
ure 3 shows two such neighboring feature locations for a scale
of 1/3 the width and height of the image. In comparison to
local features, we do not have to perform feature detection
and scale selection of the selected features, thereby making it
faster. As discussed earlier, global features however are less
robust to drastic changes in geometry.
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Fig. 4: The two nested windows for making a bigram feature de-
scriptor at a given feature location and scale.

2.1. Bigrams as feature descriptors

Conventional global descriptors such as rank-based features
[1, 2] are not distinctive enough in our dense sampling strat-
egy. SIFT descriptors [3] on the other hand are known to
perform well. We used bigrams of SIFT descriptors to make
it more distinctive.

Given a feature location and scale, we extract two 128 di-
mensional SIFT descriptors from the window corresponding
to that scale and use the bigrams as the descriptor for that fea-
ture location and scale. The first descriptor is extracted from
the full window and the second descriptor is extracted from
a sub-window centered on the feature location with a width
and height half of that of the full window. We quantize each
of the two descriptors into 10,000 words independently and
the global descriptor for that feature location and scale is then
represented by their bi-grams. For a vocabulary size of 10,000
for each of the words, this results in a bigram vocabulary size
of 100 Million. We have found that using the bigram results
in much better performance and also results in faster execu-
tion time. Figure 4 shows the two nested windows for bigram
computation of a feature location and scale.

2.2. Indexing with multiple assignments

We use the bigrams to make an inverted index and index each
frame of the reference video. Use of bigrams results in a large
vocabulary size but in order to increase the recall, we use
multiple assignments for indexing. We have found that using
multiple assignments in both query and reference side helps
improve the recall. Each descriptor in the bigram is assigned
to five words. Therefore each bigram in both the reference
and query side gets assigned to 25 words.

2.3. Automatic geometric correspondence

On the query side, global features are computed in a manner
similar to the reference video. When querying, for each fea-
ture location in the query video, its correspondence is with
the same feature location and scale in the reference video.
Therefore we do not have to perform any matching step of
the feature locations. In order to make the approach robust
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Fig. 5: Automatic correspondence determination based on position
and scale. The green features are corresponding locations. The red
feature locations are neighbors in the reference frame and are in-
cluded to make the matching robust to small shifts.

to small shifts we also match it with its four neighbors in the
reference video with the same scale.

Figure 5 demonstrates these 4 neighbors in the reference
video.

2.4. Special case: Picture-in-Picture detection

Since our global features are not scale invariant, they would
not work well for cases where the frame undergoes drastic
changes in scale. Therefore our approach described so far
will not work well for the picture-in-picture (PIP) transfor-
mation. Our approach detects picture-in-picture and pattern
insertion transformations by detecting rectangular windows
in the query video. Windows are detected by accumulating
image gradients in the x and y directions over time. We run
edge detection in each video frame with a very low thresh-
old and then accumulate the number of edges in each row
and column temporally. Rows and columns with sufficient
number of accumulated edges are candidates for the edges of
the window. The intersection of a pair of row and column
edges is a candidate corner for the rectangular window. Fi-
nally, those windows with sufficient number of edges in at
least two of the four sides are the candidate detected win-
dows. In our experiments, we have set thresholds such that
our system hardly misses any such window. Of course, this
means that sometimes it detects a lot more windows than ac-
tually present. Figure 6 show the detected PIP windows in a
few frames.

If a rectangular window is detected in the query window
(for a PIP transformation), the feature locations and scale are
determined relative to the detected rectangular region instead
of the whole frame. This is illustrated in Figure 7. When a PIP
window is detected, querying is performed with the detected
window in addition to the whole frame. This takes care of
false PIP detections.

2.5. Querying

For each query frame, we use the 40 global features to find
a corresponding match in the reference frames. The score of
a match is simply the count of the number of global feature

Fig. 6: Examples of detected PIP window.

Query frameReference frame

Fig. 7: Geometric correspondence for the PIP transform. Matching
is performed relative to the detected window.

locations matched. Each such match results in a vote for the
time offset corresponding to that match. The offset that gets
the most votes is taken as the best match for that query.

If two consecutive frames are similar, they do not add new
information for matching. This is the problem of temporal
burstiness. If not accounted for, this will result in a lot of
incorrect offsets. Temporal burstiness is easy to handle in our
system. We compare the bigram from two consecutive frames
and if either of the two words are the same, we do not use that
frame for our matching. We skip all frames similar to the
last good frame, until we find a frame with bigrams that are
different from the last good frame.

2.6. Frame sampling

For both global and local features, each video is resampled
at a fixed frame rate to extract key frames. This makes our
reference database size tractable and also helps us deal with
frame rate changes. In our submission, we sampled at 2.0 fps
on both the query and reference side. For the reference set of
approximately 400 hours, this produces 400×60×60×2≃3M
(key)frames.

3. LOCAL FEATURE BASED DETECTION

Figure 8 illustrates a functional diagram of our local feature
based CBCD scheme. We use local scale invariant SIFT
features and their bag-of-features representations, which has
been used widely in image/video retrieval areas [4–7]. The
key idea here is (1) the use of USIFT feature descriptor for
distinctiveness, (2) a novel variant of product quantization
based indexing for more accurate nearest neighbor searches
and (3) considering the temporal burstiness of local features
in scoring to suppress false alarms.
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Fig. 8: Overview of local feature based CBCD.

3.1. USIFT extraction

For each keyframe, we extract the SIFT features and use up-
right SIFT (USIFT) as the feature descriptor. USIFT is more
distinctive and faster to compute than SIFT [8]. Since none
of the video transformations include a large rotation, USIFT
can be used without degrading the robustness of the CBCD
system. Each key frame is then represented by a set of fea-
tures points (bag-of-features). Each feature point contains the
following information: video identifier id (only for reference
video frame), timestamp ts, position of feature point (x, y),
and USIFT feature vector f .

3.2. Product quantization based indexing

We use a novel version of the product quantization based
method [9] to index USIFT feature vectors obtained in the
USIFT extraction step. The product quantization based
scheme can be integrated with an inverted index, referred
to as IVFADC in [9]. A reference vector is first quantized by
a coarse quantizer with the size of N (50K in our submission),
then the residual vector from the corresponding centroid is
encoded by product quantization into a short code.

In our CBCD system, we modify the original product
quantization based method to use an arbitrary number of
codebooks in product quantization, while a residual sub-
vector is quantized by a single codebook in the original
algorithm. The framework of our product quantization based
indexing method is shown in Fig. 9. In the indexing step,
codebooks used in the product quantization are switched ac-
cording to the cell that the input vector is quantized into in
the coarse quantization. Each cell (centroid) in the coarse
quantizer has pointers1 to the codebook by which each vector
assigned to that cell should be quantized in product quanti-
zation. An arbitrary number (M ) of codebooks for product
quantization are created with the following procedure:

1. For each n = 1, · · · , N , create a set of residual sub-
1Actually, there are the same number of pointers as decomposed sub-

vectors (=8 in our submission).
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Fig. 9: Modified product quantization based indexing.

vector Rn from all vectors assigned to the n-th cell in
a coarse quantizer and assigned it to a random cluster
m ∈ {1, · · · ,M}.

2. For each m = 1, · · · ,M , update codebook Cm by clus-
tering all residual sub-vectors assigned to cluster m.

3. For each n = 1, · · · , N , assign Rn to the cluster m̂, s.t.
the codebook Cm̂ achieves minimum error in quantiza-
tion of Rn.

4. Repeat Step 2 and Step 3 until convergence.

In the case of M = 1, our codebook becomes identical to the
codebook used in [9]. Use of larger M reduces the quanti-
zation error in product quantization and improves the nearest
neighbor search accuracy at the cost of an additional mem-
ory required. In our submission, residual vectors are decom-
posed into 8 sub-vectors and the number of codebooks M
used in product quantization is set to 256. In this case, only
256×256×128≃8M byte memory is required to store code-
books.

3.3. Index search

In the search step, USIFT features in a query video are effi-
ciently matched with reference features using an inverted in-
dex [4]. In addition, we can filter out many false matches
through distance estimation in product quantization [9]. In
our submission, we filter out reference features with a dis-
tance less than 0.3 (our SIFT features are normalized to a
norm of 1.0). The result of the index search step is a set of
matched keypoint pairs (Q,R), where each query keypoint
Q has timestamp tsq and coordinate (xq, yq), and each ref-
erence keypoint R has video identifier id, timestamp tsr and
coordinate (xr, yr).

3.4. Offset-level integration

Feature-level results obtained in the index search step are in-
tegrated into offset-level results using a voting scheme [7,10].
Every matched keypoint pair (Q, R) votes to the correspond-
ing bin b[id][tsr − tsq] in the 2D Hough space. After per-
forming non-maxima suppression and thresholding, we ob-
tain the top 200 hypothesis represented by (id, offset), where



offset = tsr − tsq. Each hypothesis (id, offset) has a list
of matched keypoint pairs that have voted for the hypothe-
sis, and this information is used for geometric verification.
We also tried to incorporate the weak geometric consistency
(WGC) method [6] using scale information 2, but it did not
contribute accuracy in our preliminary experiments. This is
probably because WGC based on scale is not as useful as one
based on the orientation shown in [11].

3.5. Keypoint tracking

In the tracking step, query keypoints are tracked against key-
points in one and two previous frames. Then, each query key-
point Q has a list of keypoints Q′ s.t. 0 < tsq − ts′q ≤ 2,
(xq − x′

q)
2 + (yq − y′

q)
2 < r2 and ||fq − f ′q||2 < th . The

lists are used in the geometric re-ranking step to alleviate the
temporal burstiness effect.

3.6. Geometric re-ranking

Finally, we perform geometric verification and re-rank the re-
sult obtained in the offset-level integration step. For each
result, we estimate the transformation matrix with 4 dof [5]
between the query video and the reference video using the
RANSAC algorithm and update the score by the maximum
number of inliers. At the same time, temporal burstiness is
taken into consideration in a similar way to [12,13]. The basic
idea is to suppress bursty false matches that frequently appear
in static scenes. For example, we try to put more emphasis on
the right case in Fig. 10 than the left case where the same key-
point is matched sequentially. If the same keypoint matched
K times in different frames, we tried three scoring strategies
for this situation: (1) K, (2)

√
K, and (3) 1. Apparently, (1)

produces the same score as the conventional voting scheme
does. In our experiment, case (3), which seems to be the most
extreme case, achieved the best performance, and we adopted
this scoring strategy in our submission. Now, we obtain a list
of results based on local features. Each result includes the ref-
erence video identifier, corresponding timestamp offset, total
score and frame-level scores as described in Section 1.

4. AUDIO FEATURE BASED DETECTION

For audio features, we have used binary filterbank energy dif-
ferences [14] calculated as follows:

F (n,m) =

{
1 if EB(n,m) − EB(n,m + 1) > 0
0 otherwise,

(1)

where EB(n,m) denotes the energy in m-th filterbank for
the n-th frame. Frame size is 25.6 msec, and the skip rate is

2Orientations of matched keypoint pairs are always consistent in the
USIFT-based scheme.
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Fig. 10: An example of the temporal burstiness effect. (a) The same
feature is matched on successive frames. This might occur even be-
tween irrelevant videos especially in stationary scenes. (b) Different
features are matched on successive frames. This rarely happen be-
tween irrelevant videos.

Fig. 11: Filterbank energy in the mel scale.

10 msec. Our raw filterbank energy features are 23 dimen-
sional. Filterbanks are placed using a Mel-scale as shown in
Fig. 11. However, in our evaluation we have found that the
higher bands of this feature are noisy and decrease the perfor-
mance of the system. Therefore, we are using only the lower
15 bands for this feature. This corresponds to a band limit of
5K.

For binary filterbank energy, we used hashing scheme to
make an inverted index [15]. In addition to using the 14 con-
secutive filterbank energy differences, we are also using 8
non-consecutive filter bank differences to make a 22 dimen-
sional hash code. We have implemented multiple assignments
for hashing (up to 32). Our hashing scheme is very fast and
does not require quantization steps. Figure 12 shows the use
of the first 15 bands from the 23 dimensional feature vec-
tor for hashing based indexing. The figure shows two non-
consecutive filterbanks that are part of the 8 non consecutive
hash codes. The search step includes the same voting scheme
described in the local and global parts.

1,nEB

)15,(nF )16,(nF )21,(nF )22,(nF

)1,(nF )2,(nF )13,(nF )14,(nF…

…

24,nEB

5KHz

Fig. 12: Binary filterbank energy feature extraction.
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5. MULTI-MODAL INTEGRATION

Each of the above three modalities produces a sorted list
of results consisting of the reference video identifier, corre-
sponding timestamp offset, total score and frame-level scores.
These results are sorted by the total scores with the best result
having the highest total scores. These individual results are
integrated to produce a final list of results.

5.1. Integration and re-scoring

First, for each modality, all total scores are normalized by the
second top score to emphasize distinctiveness. Then, any two
or three results out of the three modalities that indicate the
same id and offset are integrated by simply summing the total
scores. In addition, a result that has all three modes consis-
tently receives an additional score of 5.0 (10.0) for the BAL-
ANCED (NOFA) profile, and a result that has two out of three
consensus points receives an additional score of 3.0 (5.0) for
the BALANCED (NOFA) profile. Frame-level scores are also
integrated frame-by-frame after they are normalized so that
the sum of the frame-level scores becomes 1.0 as shown in
Fig. 13. We have found that this normalization step greatly
improved the accuracy of the segment localization.

5.2. Segment localization

Finally, start frame î and end frame ĵ of the copied segment
in the query video is determined by

arg max
i,j

Si,j . (2)

Si,j is the partial sum of frame-level scores from frame i to j
normalized by the segment length:

Si,j =
∑j

t=i ft√
j − i + 1 + α + β

, (3)

where f1, · · · , fT indicate frame-level scores. Although it is
solved in a brute-force manner, an integral image can dras-
tically accelerate the computation. The equation somewhat
includes heuristics trying to penalize any too short segments
from the equation

arg max
i,j

∑j
t=i ft

j − i + 1
, (4)

which results in the trivial solution i = j = arg maxt ft.

6. CBCD EVALUATION RESULTS

Figure 14 shows the evaluation results of our run KDDILabs-
SRI.m.nofa.1 for the NOFA profile. We found that our re-
sults based on the actual threshold (left) were not as good as
the optimal results (right) in terms of NDCR. This might be
because we determined our threshold using very small sub-
set (20 hours) of the previous year’s dataset. Instead, some
of our results seem to have achieved the best performance
in terms of optimal NDCR. This comes from our improve-
ment in both global and local indexing and especially from
an integration scheme where scores depends almost only on a
consensus among modalities and distinctiveness, not on abso-
lute voting scores. In Fig. 14, it is also clear that our scheme
has achieved almost the best performance in segment local-
ization criteria. This is because, in our framework, copied
segments are localized in the integration step, not in each au-
dio or video detection framework. Score normalization prior
to localization might also contribute to the performance. In
terms of computational cost, our scheme requires almost the
same cost as the median for all participants. The bottleneck of
our current implementation is quantization of query features,
where features are quantized by a flat quantizer. This quan-
tizer should be replaced by more efficient quantizers [5,6,16].

Figure 15 shows the evaluation results of our run KDDILabs-
SRI.m.balanced.1 for BALANCED profile.

7. CONCLUSION

The system is based on global SIFT, local SIFT and audio fea-
tures and efficient indexing methods. The evaluation results
show that our system achieves good performance for both de-
tection accuracy, especially in the NOFA profile and localiza-
tion accuracy. Future work will include tunings and validation
in a larger dataset.
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Fig. 14: Our actual (left) and optimal (right) results for NOFA profile.
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Fig. 15: Our actual (left) and optimal (right) results for BALANCED profile.
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