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Abstract

With an increasingly wide-spread use of mobile devices such as Android phones
or iPhones, mobile visual search (MVS) has become one of the major applications
of image retrieval and recognition technology. With MVS, we can recognize the
surrounding world with mobile devices using its built-in camera as an input to
image recognition or retrieval systems. The recognition or retrieval results might be
effectively shown using augmented reality technology on mobile devices for instance.
Thus, mobile devices are now one of the best platforms for image retrieval systems.

While some research focuses on server-client systems in the context of MVS, we
assume the situation that visual search is performed directly on the mobile device.
We call the latter type of MVS "local MVS". Local MVS does not require any server
and it works without a network, realizing faster recognition. In this thesis, we
aim at developing a practical MVS system focusing on recent binary local features
for efficiency. Although the performance of mobile devices has been improved, it
is not sufficient to use non-binary features that requires a heavy processing load.
Surprisingly, there are few studies focusing on the image retrieval using binary
features. In many studies, binary features are used for feature-level matching
between image pairs, not for image retrieval. One reason why binary feature-based
image retrieval is not well-studied is that binary features are considered to be not
enough robust to apply them to an image retrieval problem. However, we believe
that binary features are very important for image retrieval on mobile devices and that
there is a large room for improvement in the accuracy of binary feature-based image
retrieval if we consider the recent significant advances in image representations for
non-binary features. Thus, in this thesis, we explore the potential of binary features
in the area of image retrieval and establish the basis of binary feature-based image
retrieval that can be used to real applications. To this end, we propose and evaluate
three approaches in order to achieve a practical binary feature-based image retrieval
system.

First, we propose the application of the Fisher vector representation to binary
features aiming at improving the accuracy of binary feature-based image retrieval
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by considering underlying distribution of binary features. Main contribution of
this approach is to model binary features using the Bernoulli mixture model (BMM)
and derive the closed-form approximation of the Fisher vector of BMM. To the best
of my knowledge, this is the first time to model binary features with BMM and
apply the Fisher vector approach. We show that, by modeling binary features with
BMM, it becomes possible to evaluate how informative different binary features are.
Experimental results show that the proposed Fisher vector outperforms the BoVW
method on various types of objects.

Second, we propose a substring extraction method that extracts informative bits
from original binary vector and stores in the inverted index in order to improve the
bag-of-visual words framework. These substrings are used to refine visual word-
based matching. This is the first time to bring the idea of the Hamming embedding
method to binary features. The advantage of this approach is its practicability. The
developed system is very simple but effective, achieving good trade-offs between
search precision, memory requirement, and speed. In addition, a modified version of
the local naive Bayes nearest neighbor scoring method is proposed in the context of
image retrieval, which considers the density of binary features in scoring each feature
matching. The proposed system can retrieve the database with one million images
in 87 [ms] and its accuracy significantly outperforms that of the state-of-the-art local
MVS system.

Finally, we propose to integrate the advantages of the above two approaches.
Starting with general match kernel, we show that the Fisher kernel-based similarity
measurement can be implemented using the extended inverted index structure.
Using the assumption that posterior probability is peaky, the Fisher kernel is linked
with the BoVW framework, resulting in two proposed method, namely BMM-VW
and BMM-FK. BMM-VW is a variant of BoVW, where VWs are defined by the
BMM components. BMM-FK is the modified version of the second approach, where
more appropriate similarity measurement is used. In order to ensure real-time
applications, the method called randomized BMM trees is also proposed, which
significantly accelerates the calculation of the quantization in BMM-VW and BMM-
FK. In experiments, it is shown that the BMM-FK significantly outperforms the two
previous approaches and the conventional state-of-the-art system in terms of the
image retrieval accuracy.

We have developed real applications based on the above approaches, where
a stand-alone system, a server-client system, and a hybrid system are used as a
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backend. Through these practical applications, it has been proven that our developed
systems have sufficient potential for practical usages.
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Chapter 1

Introduction

1.1 Background

Image retrieval is the problem of searching for digital images in large databases. It
can be classified into two types: text-based image retrieval and content-based image
retrieval [1]. Text-based image retrieval (or concept-based image retrieval) refers
to an image retrieval framework, where the images first are annotated manually,
and then text-based Database Management Systems (DBMS) is utilized to perform
retrieval [2]. However, the rapid increase of the size of image collection in the early
90’s brought two difficulties. One is that the vast amount of labor is required in
manually annotating the images. The other difficulty is the subjectivity of human
perception; it sometimes happens that different people perceive the same image
differently, resulting in different annotation results or different query keywords in
search. This makes text-based image retrieval results less effective.

1.1.1 From Text-based to Content-based Image Retrieval

In order to overcome these difficulties, Content-Based Image Retrieval (CBIR) [3] or
Query By Image Content (QBIC) [4] was proposed. In CBIR, images are automatically
annotated with their own visual content by feature extraction process. The visual
content includes colors [5–7], shapes [8], textures [9], or any other information that
can be derived from the image itself. Extracted features representing visual content
are indexed by high multi-dimensional indexing techniques to realize large-scale
image retrieval [1].
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Similarity: 3

Position (x, y)

Orientation θ
Scale σ

Feature vector v

Local feature

Figure 1.1: An example of local feature-based image retrieval.

1.1.2 Local Feature-based Image Retrieval

Although lots of image features are proposed in the middle of 90s in order to improve
CBIR system, most of these features are global and therefore have difficulty in dealing
with partial visibility and extraneous features. In order to handle partial visibility
and transformations such as image rotation and scaling, a pioneer work on local
feature-based image retrieval was done in [10]. In this framework, interest points are
autoatically detected from an image, and then feature vectors are computed at the
interest points. In search step, each of feature vectors extracted from a query image
votes scores to matched referece features whose feature vectors are similar to the
query feature vector. In local feature-based image retrieval, many local features are
used in search, it is very robust against partial occulusion.

Figure 1.1 shows a toy example of local feature-based image retrieval, where the
similarity of the two images is to be calculated. Fisrtly, local features are extracted
from both images. Then, these local features are matched to generate pairs of local
features whose feautre vectors are similar. In Figure 1.1, there are three pairs after
matching. The most simple way to define the similarity between these two images is
to use the number of the matched pairs: three in this case.
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Table 1.1: The comparison of processing times [sec] of different local features run
on a PC. The size of input images is 640x480. The default parameters defined in
OpenCV 3.0 are used.

Detection Description Total
SIFT 0.125 0.154 0.279
SURF 0.049 0.082 0.131
ORB 0.016 0.009 0.025

Table 1.2: The comparison of processing times [sec] of different local features run on
a smartphone. The size of input images is 640x480. The default parameters defined
in OpenCV 3.0 are used.

Detection Description Total
SIFT 1.364 1.653 3.017
SURF 0.635 1.553 2.188
ORB 0.053 0.145 0.198

1.1.3 Advances of Mobile Devices

A smartphone is a mobile phone with an advanced mobile Operating System (OS)
which combines features of a personal computer OS with other features useful for
mobile or handheld use such as wireless communication or a built-in camera. While
the history of the smartphone is old, recent major event in the history of mobile
phones lead to a fundamental change was the launch of the first iPhone in 2007.
In 2007, Apple Inc. introduced the iPhone, which is the first smartphones to use
a multi-touch interface. In 2008, the first Android phone was released from HTC.
Android is a mobile OS developed by Google Inc. These two platforms has driven
the popularization of the smartphones. In terms of market size, it is reported that
the global smartphone shipments for 2015 grew 10.3% year on year to 1.293 billion
units1.

1.1.4 Objective

With the above increasingly wide-spread use of mobile devices such as Android
phones or iPhones, mobile visual search (MVS) has become one of the major
applications of image retrieval and recognition technology. With MVS, we can
recognize the surrounding world with mobile devices using its built-in camera as
an input to image recognition or retrieval systems. The recognition or retrieval

1http://press.trendforce.com/press/20160114-2265.html

http://press.trendforce.com/press/20160114-2265.html
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results might be effectively shown using augmetend reality technology. Thus, mobile
devices are now one of the best platforms for image retrieval systems.

In this thesis, we develop a practical MVS system focusing on recent binary local
features. While some research focuses on server-client systems in the context of
MVS [11–15], the purpose of this thesis is to achieve fast and accurate recognition
with lower memory requirements using only mobile devices [16]. We call the latter
type of MVS "local MVS". Local MVS does not require any server and it works
without a network, realizing faster recognition. The difficulty of local MVS lies
in indexing of local features because it is necessary to fit the database to memory
on mobile devices or an application size while maintaining retrieval accuracy. In
other words, managing the trade-off between the memory size of the database
and the accuracy of image retrieval is very important. Thus, the objective of this
thesis is to achieve practical, accurate, low-memory, and fast recognition system
working on mobile devices. The reason why we focus on binary local features is
computational cost. Although the performance of mobile devices has been improved,
it is not sufficient to use features that requires a heavy processing load. Table 1.1
and Table 1.2 compare processing times [sec] of different local features run on a PC
and a smartphone respectively. A standard PC with a Core i7 2600 CPU 3.4GHz and
Nexus7 (2013) with Qualcomm SnapDragon 600 (1.51GHz) are used here. We can
see that the processing time on the mobile device is one order of magnitude longer
than that on the PC. Furthermore, non-binary features (SIFT and SURF) are one
order of magnitude slower than binary feature (ORB)2. Thus, non-binary features
are not appropriate for MVS especially for real-time applications.

In spite of the above obervation that binary features are very important for
applications on mobile devices, there are few studies focusing on the image retrieval
using binary features [17, 18]. In many studies that propose binary features [19–23],
the performance of (binary) features were evaluated in terms of the accuracy of
feature-level matching for image pairs (e.g., precision-recall curve or matching
repeatability), not evaluated in terms of the accuracy of image retrieval. Although
several studies [19, 24] evaluated the accuracy of binary feature-based image retrieval,
the framework used in these studies is too naive (nearest neighbor search + voting)
and thus not practical. We think that one reason why binary feature-based image
retrieval is not well-studied is that binary features are considered to be not enough
robust to apply them to an image retrieval problem [16].

2The details of these local features will be described in Chapter 2.
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We believe that binary features are very important for image retrieval, especially
on mobile devices, when we consider their efficiency. In addition, we can say that
there is a large room for improvement in the accuracy of binary feature-based image
retrieval if we consider the recent significant advances in image representations for
non-binary features. In this thesis, in order to clarify these issues, we explore the
potential of binary features in the area of image retrieval and establish the basis of
binary feature-based image retrieval that can be used to real applications.

1.2 Contribution of This Thesis

In this thesis, in order to realize practical mobile visual search system, we explore
three approaches focusing on local binary features.

• Fisher vectors for binary features. We propose the application of the Fisher
vector representation to binary features aiming at improving the accuracy of
binary feature-based image retrieval by considering the distribution of binary
features.Main contribution of this approach is to model binary features using
the Bernoulli mixture model (BMM) and derive the closed-form approximation
of the Fisher vector of BMM. To the best of my knowledge, this is the first time
to model binary features with BMM and apply the Fisher vector approach.
We show that, by modeling binary features with BMM, it becomes possible to
evaluate how informative different binary features are. Experimental results
show that the proposed Fisher vector outperforms the BoVW method on
various types of objects. In addition, we also propose a fast approximation
method to accelerate the computation of the proposed Fisher vectors by one
order of magnitude with comparable performance.

• Extended inverted index for binary features. We propose a substring extrac-
tion method that extracts informative bits from original binary vector and stores
in the inverted index in order to improve the bag-of-visual words framework.
These substrings are used to refine visual word-based matching. This is the first
time to bring the idea of the Hamming embedding method to binary features.
The advantage of this approach is its practicability. The developed system is
very simple but effective, achieving good trade-offs between search precision,
memory requirement, and speed. In addition, a modified version of the local
naive Bayes nearest neighbor scoring method is proposed in the context of
image retrieval, which considers the density of binary features in scoring each
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feature matching. Finally, in order to suppress false positives, we introduce
a model check step after standard geometric verification using constraint on
the configuration of a transformed reference image. The suppression of false
positives is essential for real use cases. The proposed system can retrieve the
database with one million images in 87 [ms] and its accuracy significantly
outperforms that of the state-of-the-art local MVS system.

• Linking Fisher kernel to inverted index-based systems. In this approach,
we propose to integrate the advantages of the above approaches. Starting
with general match kernel, we show that the Fisher kernel-based similarity
measurement can be implemented using the extended inverted index structure.
Using the assumption that posterior probability is peaky, the Fisher kernel is
linked with the BoVW framework, resulting in two proposed method, namely
BMM-VW and BMM-FK. BMM-VW is a variant of BoVW, where VWs are
defined by the BMM components. BMM-FK is the modified version of the
second approach, where more appropriate similarity measurement is used. In
order to ensure real-time applications, the method called randomized BMM
trees is also proposed, which significantly accelerates the calculation of the
quantization in BMM-VW and BMM-FK. In experiments, it is shown that
the BMM-FK significantly outperforms the two previous approaches and the
conventional state-of-the-art system in terms of the image retrieval accuracy.

Finally, we have developed real applications, which include a stand-alone system,
a server-client system, and a hybrid system of them. Through these practical
applications, it has been proven that our developed systems have sufficient potential
for practical usages.

1.3 Structure of This Thesis

The structure of this thesis is presented in Figure 1.2. The background, the contri-
bution, and the objective of the thesis is given in this chapter. In Chapter 2, we
survey local features and image representations used in local feature-based image
retrieval. In Chapter 3, we derive the Fisher vector representation suitable for
binary features. In Chapter 4, we develop our local image retrieval system based
on extended inverted index. In Cpapter 5, we combine the idea of the Fisher vector
and the extended inverted index-based similarity search system. In Chapter 6, we
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introduce real applications of our local feature-based image retrieval system. Finally,
in Chapter 7, we conclude the thesis and present our future work.
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Chapter 2

Related Work

All of the local feature-based image retrieval system involves two important processes:
local feature extraction and image representation. In local feature extraction, certain
local features are extracted from an image. And then, in image representation, these
local features are integrated or aggregated into a vector representation in order to
calculate similarity between images1.

In this chapter, we review related work in terms of local features and image
representation [25]. In Section 2.1, various local features are introduced, which
are the basis of recent local feature-based retrieval or recognition frameworks. In
Section 2.2, various image representations are explained. In Figure 2.1, the overview
of the history of local features and image representations.

2.1 Local Features

In this section, local features used in local feature-based image retrieval are reviewed.
Local features are characterized by the combination of feature detector and feature
descriptor. Feature detector finds feature points/locations, e.g. (x, y), or feature
regions, e.g. (x, y, σ), where σ denotes the scale of the region. Feature descriptor
extracts multi-dimensional feature vectors from the detected points or regions. While
feature detectors and feature descriptors can be used in arbitrary combinations,
specific combinations are usually used such as the DoG detector and the SIFT
descriptor, multi-scale FAST detector and the BRIEF descriptor. In order to make
local features invariant to rotation, the orientation of a local feature is estimated in
many local features. In this thesis, the algorithms for the orientation estimation are

1Images are not necessarily represented by a single vector. Some methods simply defines the
similarity between two sets of local features instead of explicitly integrating them into vectors.
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included in the feature descriptor part, not in the detector part. While we focus on
the systematic summary of local features, there are complementary comparative
evaluations of local features [26–32, 24, 33, 34].

2.1.1 Feature Detectors

Feature detectors find multiple feature points or feature regions from an image.
Feature detectors can be characterized by two factors: region type and invariance
type. The region type represents the shape of a detected point or region such as
corner or blob. The invariance type here represents to which transformations the
detector is robust. The transformation can be a rotation, a similarity transformation,
or an affine transformation. It is important to choose a feature detector with a specific
invariance suitable for the problem we are solving.

Harris, Harris-Laplace, and Harris-Affine Detector

Harris detector [35] is one of the most famous corner detectors, which extends
Moravec’s corner detector. The original idea of the Moravec detector is to detect a
pixel such that there is no nearby similar patch to the patch centered on the pixel. We
assume a grayscale image I as an input. Let I(u, v) denote the intensity of the pixel at
(u, v) in I. Following the idea of Muravec detector, let E(x, y) denote the weighted
sum of squared differences caused by a shift (x, y):

E(x, y) =
∑
u,v

w(u, v)
(
I(u + x, v + y) − I(u, v)

)2 , (2.1)

where w(u, v) is a window function. The term I(u + x, v + y) can be approximated by
a Taylor expansion as

I(u + x, v + y) ≈ I(u, v) + Ix(u, v)x + Iy(u, v)y, (2.2)

where Ix and Iy denotes the partial derivatives of I with respect to x and y. Using
this approximation, Eq. (2.1) can be written as

E(x, y) ≈
∑
u,v

w(u, v)
(
Ix(u, v)x + Iy(u, v)y

)2
. (2.3)
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This can be re-written in matrix form:

E(x, y) ≈ (x, y)M(x, y)⊤, (2.4)

where

M =
∑
u,v

w(u, v)

 I2
x IxIy

IxIy I2
y

 (2.5)

If E(x, y) becomes large in any shift (x, y), it indicates a corner. This can be judged
using the eigenvalues of M. Letting α and β denote the eigenvalues of M, E(x, y)
increases in all shift if both α and β are large. Instead of evaluating α and β directly,
it is proposed to use Tr(M) = α + β and Det(M) = αβ for efficiency [35]; the corner
response R is defined as:

R = Det(M) − k (Tr(M))2 . (2.6)

Thresholding on the values of R and performing non-maxima supporession, the
Harris corners are detected from the input image.

The Harris detector is effective in the situation where scale change does not
occur like tracking or stereo matching. However, as the Harris detector is very
sensitive to changes in image scale, it is not appropriate for image retrieval, where
the sizes of objects in query and reference images are frequently different. Therefore
scale-invariant deature detector is essential for robust image recognition or retrieval.

Harris-Laplace detector [36] is a scale-adapted Harris detector. It firstly detects
candidate feature points using the Harris detector on multiple scales (multi-scale
Harris detector). Then, these candidate feature points are verified using the Laplacian
to check whether the detected scale is maxima or not in the scale direction (cf. LoG
Detector). The Harris-Laplace detector detects corner-like structures.

Harris-Affine detector [37, 38] is a affine-invariant feature detecctor. It firstly
detects feature points using the Harris-Laplace detector. Then, iteratively refine these
regions to affine regions using the second moment matrix as proposed in [39, 40].
The resulting Harris-Affine regions are characterized by ellipses.

Hessian, Hessian-Laplace, and Hessian-Affine Detector

Hessian detector [41] searches for image locations that have strong derivatives in
two orthogonal directions. It is based on the matrix of second derivatives, namely
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Hessian:

H(x, y, σ) =

Lxx(x, y, σ) Lxy(x, y, σ)
Lxy(x, y, σ) Lyy(x, y, σ)

 , (2.7)

where L(x, y, σ) is an image smoothed by a Gaussian kernel G(x, y, σ):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y). (2.8)

The Hessian detector detects (x, y) as feature point such that the determinant of the
Hessian H is local-maxima comapred with neighboring 8 pixels:

det(H) = LxxLyy − L2
xy. (2.9)

Hessian-Laplace detector [36] is a scale-adapted Hessian detector. It firstly
detects candidate feature points using the Hessian detector on multiple scales (multi-
scale Hessian detector). Then, these candidate feature points are selected according
to the Laplacian in the same way as Harris-Laplace. Note that the trade of the
Hessian matrix is identical the Laplacian:

tr(H) = Lxx + Lyy. (2.10)

The Hessian-Laplace detector detects blob-like structures similar to the LoG or DoG
detectors explained later. It is claimed that these methods often detect feature points
on edges while the Hessian-Laplace does not, owing to the use of the determinant of
the Hessian [27].

Hessian-Affine detector [27] is a affine-invariant feature detecctor and is imilar
in spirt as the Harris-Affine detector. It firstly detects feature points using the
Hessian-Laplace detector. Then, iteratively refine these regions to affine regions
using the second moment matrix as done in the Harris-Affine detector.

LoG Detector

Detecting scale-invariant regions can be accomplished by searching for stable regions
across all possible scales, using a continuous function of scale known as scale space.
A scale space representation is defined by

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.11)
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where G(x, y, σ) is a Gaussian kernel:

G(x, y, σ) =
1

2πσ2 exp
(
−(x2 + y2)/2σ2

)
. (2.12)

In [42], a blob detector that searches for scale space extrema of a scale-normalized
Laplacian-of-Gaussian (LoG) σ2

∇
2L, where

∇
2L = Lxx + Lyy. (2.13)

The term σ2 is the normalization term, which normalizes response of LoG filter
among different scales.

DoG Detector

Scale-Invariant Feature Transform (SIFT) [43, 44]2 is one of the most widely used local
features due to its robustness. In detection of SIFT, it is proposed to use scale-space
extrema in the Difference-of-Gaussian (DoG) function instead of LoG in order to
efficiently detect stable keypoint. The DoG D(x, y, σ) can be computed from the
difference of two nearby scales separated by a constant multiplicative factor k:

D(x, y, σ) =
(
G(x, y, kσ) − G(x, y, σ)

)
∗ I(x, y) (2.14)

= L(x, y, kσ) − L(x, y, σ). (2.15)

The DoG is a close approximation to the scale-normalized LoG σ2
∇

2L, which is
shown using the heat diffusion equation:

∂L
∂σ
= σ∇2L. (2.16)

The term ∂L/∂σ can be approximated using the difference of nearby scales at kσ and
σ:

∂L
∂σ
≈

L(x, y, kσ) − L(x, y, σ)
kσ − σ

. (2.17)

Thus, we get:
L(x, y, kσ) − L(x, y, σ) ≈ (k − 1)σ2

∇
2L. (2.18)

. The above equation shows that the response of DoG is already scale-normalized.
Thus, DoG detector detects (x, y, σ) is a feature region if the response of D(x, y, σ)

2The SIFT algorithm includes both of detection and detection. In this thesis, they are distinguished
by using the terms the SIFT detector and the SIFT descriptor.
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is a local maxima or minima by comparing its 26 neighbors in terms of x, y, and σ
dimensions. In [44], the DoG is efficiently calculated using image pyramid.

The detected region (x, y, σ) is further refined to sub-pixel and sub-scale accuracy
by fitting a 3D quadratic to the scale-space Laplacian [45, 44]. After this refinement,
detected regions are filterd out according to absolute values of their DoG responses
and cornerness measures similar to the Harris detector in order to remove low
contrast or edge regions [44].

SURF Detector

Speeded Up Robust Features (SURF) [46, 47] or fast Hessian detector is efficient
approximation of the Hessian-Laplace detector. In [46, 47], it is proposed to approx-
imate with box filters the Gaussian second-order partial derivatives Lxx, Lxy, and
Lyy, which are required in the calculation of the determinant of the Hessian. These
box filters can be efficiently calculated using integral images [48]. The SURF detector
detects a scale-invariant blob-like features similar to the Hessian-Laplace detector.
While the Hessian-Laplace detector uses the determinant of Hessian to select the
location of the features and uses LoG to determine the characteristic scale, the SURF
detecter uses the determinant of Hessian for both similar to the DoG detector.

FAST Detector

Most of the local binary features employ fast feature detectors. The Features from
Accelerated Segment Test (FAST) [49–51] detector is one of such extremely efficient
feature detectors. It can be considered as a simplied version of the Smallest Uni-value
Segment Assimilating Nucleus Test (SUSAN) detector [52], which detects pixels
such that there is few similar pixels around the pixels. The FAST Detector detects
pixels that are brighter or darker than neighboring pixels based on the accelerated
segment test as follows. For each pixel p, the intensities of 16 pixels on a Bresenham
circle of radius 3 are compared with that of p, and are classified into three tyeps:
brighter, similar, and darker. If there is least S connected pixels on the circle which are
classified to brighter or darker, p is detected as a corner. In order to avoid detecting
edges, S must be larger than nine and the FAST with S = 9 (FAST-9) is usually used.

In [49], it is proposed to accelerate this test by firstly checking the four pixels at
the top, bottom, left, and right on the circle, achieving early rejection of the test. In
[50], the segment test is further sped up by using a decision tree. By using a decision
tree, the test is optimized to reject candidate pixels very quickly, realizing extremely
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fast feature detection. In [19], it is proposed to filter out the detected FAST features
according to their Harris scores. As the FAST detector is not scale-invariant, in order
to ensure approximate scale invariance, feature points can be detected from an image
pyramid [19], which is called the multi-scale FAST detector.

The AGAST descriptor [53], an acronym for Adaptive and Generic Accelerated
Segment Test, is an extension of the FAST detector. There are two major improvements
in the AGAST descriptor. The first one is the extension of the configuration space. In
the AGAST descriptor, two additional types of the surrounding pixels are added
in order to the configuration space: not brighter and not darker. By doing so, a more
efficient decision tree can be constructed. The second improvement is that the
AGAST descriptor adaptively switches two different decision trees according to the
probability of a pixel state to be similar to the nucleus.

In [20], the multi-scale version of the AGAST detector is used. Local features are
first detected from multiple scales, and then non-maxima suppresion is performed in
scale-space according to the FAST score. Finally, scales and positoins of the detected
local features are refined in a similar way to the SIFT detector.

2.1.2 Feature Descriptors

Differential Invariants Descriptor

Differential invariants descriptor was used in the pioneer work of local feature-based
image retrieval [10]. It consists of components of local jets [54] and has rotation
invariance:

v =



L
LiLi

LiLi jL j

Lii

Li jL ji

ϵi j(L jklLiLkLl − L jkkLiLlLl

Lii jL jLkLk − Li jkLiL jLk

−ϵi jL jklLiLkLl

Li jkLiL jLk



, (2.19)

where i, j, k, l ∈ {x, y}, and Lx represents the convolution of image I with the Gaussian
derivative Gx in terms of x direction.

One approach to attain rotation-invariant local features is to adopt a scale-
invariant descriptor like this differential invariants descriptor. However, this ap-
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proach results in less distinctive feature vector because it discards image information
so that the resulting vector becomes the same irrespective of the degree of rotation.
Therefore, many descriptors adopts an orientation estimation step, and then feature
descriptors extracts (scale-variant) feature vecctors relative to this orientation and
therefore achieve invariance.

SIFT Descriptor

The SIFT [43, 44] descriptor is one of the most widely used feature descriptors,
and sometimes combined with the other detectors (e.g. the Harris/Hessian-Affine
detectors) as well as the SIFT detector. In the SIFT descriptor, the orientation of
local region (x, y, σ) is estimated before description as follows. Firstly, the gradient
magnitude m(x, y) and orientation θ(x, y) are computed using pixel differences:

m(x, y) =
√(

L(x + 1, y) − L(x − 1, y)
)2
+

(
L(x, y + 1) − L(x, y − 1)

)2, (2.20)

θ(x, y) = tan−1 L(x, y + 1) − L(x, y − 1)
L(x + 1, y) − L(x − 1, y)

, (2.21)

where L(x, y) denotes the intensity at (x, y) in the image I smoothed by the Gaussian
with the scale parameter corresponding to the detected region. Then, an orientation
histogram is formed from the gradient orientations of sample pixels within the
feature region; the orientation histogram has 36 bins covering the 360 degree range
of orientations. Each pixel votes a score of the gradient magnitude m(x, y) weighted
by a Gaussian window to the bin corresponding to orientation θ(x, y). The highest
peak in the histogram is detected, which corresponds to the dominant direction of
local gradients. If any, the other local peaks that are within 80% of the highest peak
are used to create local features with that orientations [44].

After the assignment of the orientation, the SIFT descriptors are computed for
normalized image patches. The descriptor is represented by a 3D histogram of
gradient location and orientation, where location is quantized into a 4 × 4 location
grid and the orientation is quantized into eight bins, resulting in the 128-dimensional
descriptor. For each of sample pixels, the gradient magnitude m(x, y) weighted by a
Gaussian window is voted to the bin corresponding to (x, y) and θ(x, y) similar to
the orientation estimation. In order to handle a small shift, a soft voting is adopted,
where scores weighted by trilinear interpolation are additionally voted to seven
neighbor bins (voted to eight bins in total). Finally, the feature vector is ℓ2 normalized
to reduce the effects of illumination changes.
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It is shown that certain post processing improves the discriminative power of the
SIFT descriptor [55, 56]. In [55], it is proposed to transform the SIFT descriptors by (1)
ℓ1-normalization of the SIFT descriptor instead of ℓ2 and (2) taking square root each
dimension. The resulting descriptor is called RootSIFT. Comparing RootSIFT using
ell2 distance correspond to using the Hellinger kernel in comparing the original SIFT
descriptors. In [56], explict feature map of the Dirichlet Fisher kernel is proposed
to transform the histogram-based feature vector (including the SIFT descriptor) to
more discriminative one.

SURF Descriptor

The orientation assignment of the SURF Descriptor [46, 47] is similar to the SIFT
descriptor. While the gradient magnitude and orientation are calculated from
the image smoothed by the Gaussian in the SIFT descriptor, the Haar-wavelet
responses in x and y directions are used in the SURF descriptor, where integral
images are used for efficient calculation of the Haar-wavelet response. Letting s
denote the characteristic scale of the SURF feature, the size of the Haar-wavelet is
set to 4s. The Haar-wavelet responses of the pixels in a circular with the radius of
6s are accumulated using a sliding window with the size of π/3 and the dominant
orientation is obtained.

In description, the feature region is first rotated using the estimated orientation,
and divided into 4 × 4 subregions. For each of the subregions, dx, dy, |dx|, and |dy|

are computed at 5 × 5 regularly spaced sample points, where dx and dy are the Haar-
wavelet responses with the size of 2s in x and y directions. These values are accumu-
lated with the Gaussian weights, resulting in a subvector v = (

∑
dx,

∑
dy,

∑
|dx|,

∑
|dy|).

The subvectors of 4 × 4 regions are concatenated to form the 64-dimensional SURF
descriptor.

BRIEF Descriptor

The Binary Robust Independent Elementary Features (BRIEF) descriptor [57] is a
pioneering work in the area of recent binary descriptors [30]. Binary descriptors
are quite different from the descriptors discussed above because they extract binary
strings from patches of interest regions for efficiency instead of extracting gradient-
based high-dimensional feature vectors like SIFT. The distance calculations between
binary features can be done efficiently by XOR and POPCNT operations.
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The BRIEF descriptor is a bit string description of an image patch constructed
from a set of binary intensity tests. Many binary descriptors utilize similar binary
tests in extracting binary strings. Consider the t-th smoothed image patch pt, a binary
test τ for d-th bit is defined by:

xtd = τ(pt; ad, bd) =

 1 if pt(ad) ≥ pt(bd)

0 else
, (2.22)

where ad and bd denote relative positions in the patch pt, and pt(·) denotes the
intensity at the point. Using D independent tests, we obtain D-bit binary string
xt = (xt1, · · · , xtd, · · · , xtD) for the patch pt. In the original BRIEF descriptor [57],
the relative positions {(ad, bd)}d are randomly selected from certain probabilistic
distributions (e.g. Gaussian).

The ORB descriptor [19] is a modified version of the BRIEF descriptor, where
two improvements are proposed: a orientation assignment and a learning method to
optimize the positions {(ad, bd)}d. In the orientation assignment, the intensity centroid
[58] is used. The intensity centroid C is defined as

C =
(m10

m00
,

m01

m00

)
, (2.23)

where mpq is the moments of the feature region:

mpq =
∑
x,y

xpyqI(x, y). (2.24)

The orientation θ of the vector from the center of the feature region to C is obtained
as:

θ = atan2(m01,m10). (2.25)

In athe learning method, the positions {(ad, bd)}d are optimized so that the average
value of each resulting bit is close to 0.5, and bits are not correlated. This is achieved
by an algorithm which greedy chooses the best binary test from all possive tests:

1. Calculate means of bits of all binary tests using traning patches rotated by θ.

2. Sort the bits according to their distance from a mean of 0.5. Let T denote the
resulting vector.

3. Initialize the result vector R by the first test in T and remove it from T.
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4. Take the next test from T, and compare it against all tests in R. If its absolute
correlation is smaller than a threshold, discard it; else add it to R. Repeat this
step until there are 256 tests in R. If there are fewer than 256, raise the threshold
and try again.

This descriptor is usually combined with the multi-scale FAST detector, and therefore
coined as Oriented FAST and Rotated BRIEF (ORB).

The BRISK descriptor [20], an acronym for Binary Robust Invariant Scalable
Keypoints, is a binary fescriptor similar to the ORB descriptor but proposed at the
same time. The major difference from the ORB descriptor is that the BRISK descriptor
utilizes different sampling patterns for binary tests. The BRISK sampling pattern
is defined by the locations pi = (ai, bi) equally spaced on circles concentric with the
keypoint, similar to the DAISY[59, 60] descriptor. For each location, the responses
of different sizes of Gaussian kernel I(p j, σ) and I(pi, σi) at two different points pi

and p j are compared in the tests as done in Eq. (2.22), while the intensities at two
different points of smoothed image are compared in the ORB descriptor. In the
BRISK descriptor, sampling-point pairs whose distances are shorter than a threshold
are used for description, resulting in the 512-bit descriptor. The oriention tan−1(g) is
also estimated using the sampling pattern:

g(pi, p j) = (pi − p j)
I(p j, σ j) − I(pi, σi)
||p j − pi||

2 , (2.26)

g =

gx

gy

 = 1
L

∑
(pi,p j)∈L

g(pi, p j), (2.27)

where L is sampling-point pairs whose distances are relatively long.

The FREAK descriptor [21], an acronym for Fast REtinA Keypoint, is a binary
fescriptor similar to the ORB and FREAK descriptor. The FREAK sampling pattern
mimics the retinal ganglion cells distribution with their corresponding receptive fields,
resulting in the very similar sampling pattern fo the DAISY[59, 60] descriptor. In
the FREAK descriptor, the responses of different sizes of Gaussian kernel at two
different points are compared in the tests similar to the BRISK descriptor, but the
learning method in the ORB descriptor is used to select the effective binary tests.
The orientation is also calculated in a similar way to the BRISK descriptor. The
differences are the sampling pattern and the number of point pairs. The number of
point pairs is reduced to 45, achieving smaller memory requirement.
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2.2 Image Representations

2.2.1 Bag-of-Visual Words

The BoVW framework is the de-facto standard way to encode local features into a
fixed length vector. The BoVW framework is firstly proposed in the context of object
matching in videos [61], it has been used in various tasks in image retrieval [62–64],
image classification [65–67], and video copy detection tasks [68, 69]. In the BoVW
framework, represantative vectors called visual words (VWs) or visual vocabulary
are created. These representative vectors are usually created by applying k-means
algorithm to training vectors, and resulting centroids are used as VWs. Feature
vectors extracted from an image are quantized into VWs, resulting in a histogram
representation of VWs. Image (dis)similarity is measured by ℓ1 or ℓ2 distance between
the normalized histograms.

As the histograms are generally sparse3, an inverted index and a voting function
enables an efficient similarity search [61]. Figure 2.2 shows a framework of image
retrieval using the inverted index data structure. The inverted index contains a list
of containers for each VW, which store information of reference features such as the
identifiers of reference images, the positions (x, y) of the reference features, or other
information used in search step.

The framework involves three steps: training, indexing, and search steps. In
training step, VWs are trained by performing the k-means algorithm to training
vectors. Other trainings requried for indexing or search are done, if any. In indexing
step, feature regions are firstly detected in a reference image, and then feature
vectors are extracted to describe these regions. Finally, each of these reference
feature vectors is quantized into VW, and the identifier of the reference image is
stored in the corresponding lists with other metadata related the reference feature.
In search step, feature regions are detected in a query image, feature vectors are
extracted, and these query feature vectors are quantized into VWs in the same
manner as done in the indexing step. Then, each of query feature vote a certain
score to reference images whose identifiers are found in the corresponding lists. A
Term Frequency-Inverse Document Frequency (TF-IDF) scoring [61] is often used
in voting function. The voting scores are accumulated over all of the query feature

3Note that, in image classification tasks, the BoVW histogram is often not sparse but dense because
extremely larger number of features are extracted with dense grid sampling and the number of VWs is
relatively small. Therefore, it is not standard to use inverted index but simply treat BoVW histogram
as a dense vector.
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features, resulting similarities between the query image and the reference images.
The results obtained in voting function optionally refined by Geometric Verification
(GV) or spatial re-ranking [63, 70], which will be described later.

The BoVW is the most widely used framework in local feature-based image
retrieval, and therefore many extensions of the BoVW framework are proposed.
In the following, we comprehensively review these extensions. We classify the
BoVW extensions into the following groups in this thesis: large vocabulary, multiple
assignment, post-filtering, weighted voting, geometric verification, weak geometric
consistency, and query expansion. These are reviewed one by one.

Large Vocabulary

Using a large vocabulary in quantization, e.g. one million VWs, increases discrimi-
native power of VWs, and thus improves search precision. In [62], it is proposed to
quantize feature vectors using a vocabulary tree, which is created by hierarchical
k-means clustering (HKM) instead of a flat k-means clustering. The vocabulary tree
enables extremely efficient indexing and retrieval while increasing discriminative
power of VWs. A hierarchical TF-IDF scoring is also proposed to alleviate quan-
tization error caused in using a large vocabulary. This hierarchical scoring can be
considered as a kind of multiple assignment explained later.

In [63], approximate k-means (AKM) is proposed to create large vocabulary.
AKM is an approximated version of k-means algorithm, where an approximate
nearest neighbor search method is used in assigning training vectors to their nearest
centroids. In AKM, a forest of randomized k-d trees [71–73] is used for approximate
nearest neighbor search, where are the randomized k-d trees are simultaneously
searched using a single priority queue in a best-bin-first manner [74]. This nearest
neighbor search is performed in quantization as well as in clustering. It is shown
that AKM outperforms HKM in terms of image search precision. This is because
HKM minimizes quantization error only locally at each node while the flat k-means
minimizes total quantization error, and AKM successfully approximate the flat
k-means clustering.

In [75, 76], the combination of the above HKM and AKM, namely approximate
hierarchical k-means (AHKM), is proposed to construct further larger vocabulary.
The AHKM tree consists of two levels, where each level has 4K nodes. The first level
is constructed by AKM using randomly sampled training vectors. Then, over 10
billion training vectors are devided into 4K clusters by using the first level centroids.
For each of the above 4K clusters AKM is further applied to construct the second
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level with 4K centroids, resulting in 16M VWs. In the construction of the first level,
th tree structure is balanced so that averaging the speed of the retrieval [77, 78].

Multiple Assignment

One significant drawback of VW-based matching is that two features are matched if
and only if they are assigned to the same VW. Figure 2.3 illustrates this drawback. In
Figure 2.3 (a), two features f1 and f2 extracted from the same object are close to each
other in the feature vector space. However, there are the boundary of the Voronoi
cells defined by VWs, and they are assigned to the different VWs v1 and v j. Therfore,
f1 and f2 are not matched in the naive BoVW framework. Multiple assignment (or
soft assignmet) is proposed to solve this problem. The basic idea is to assign feature
vectors not only to the nearest VW but to the several nearest VWs. Figure 2.3 (b)
explains how it works. Suppose f1 is a query vector and assigned to the nearest
two VWs, vi and v j. In this case, reference features inclusing f2 in the gray area are
matched to f1. In general, multiple assignment improves recall of matching features
while degrading precision because each feature is matched with larger number of
features in the database compared with hard (single) assignment case.

In [79], each of reference features is assigned to the fixed number r of the nearest
VWs in indexing and the corresponding score exp− d2

2α2 is additionally stored in the
inverted index, where d is the distance from the VW to the reference feature, and α is
a scaling parameter. It is shown that the multiple assignment brings a considerable
performance boost over hard-assignment [63]. This multiple assignment is called
reference-side multiple assignment because it is done in indexing. Beucase reference-
side multiple assignment increases the size of the index almost proportionally to the
factor r, the following query-side multiple assignment is often used. In [79], it is also
proposed to perform multiple assignment against image patch, namely image-space
multiple-assignment. In image-space multiple-assignment, a set of descriptors is
extracted from each image patch by synthesizing deformations of the patch in
the image space and assign each descriptor to the nearest visual word. However,
it is shown that, compared to descriptor-space soft-assignment explained above,
image-space multiple assignment is much more computationally expensive while
not so effective.

In [77], it is proposed to perform multiple assignment to a query feature (query-
side multiple assignment), where the distance d0 to the nearest VW from a query
feature is used to determine the number of multiple assignments. The query feature
is assigned to the nearest VWs such that the distance to the VW is smaller than αd0
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(α = 1.2 in [77]). This approach adaptively changes the number of assigned VWs
according to ambiguity of the feature.

While all of the above methods utilize the Euclidean distance in selecting VWs
to be assigned, in [75, 76], it is proposed to exploit a probabilistic relationships
P(W j|Wq) of VWs in multiple assignment. P(W j|Wq) is the probability of observing
VW W j in a reference image when VW Wq was observed in the query image. In
other words, P(W j|Wq) represents which other VWs (called alternative VWs) that
are likely to contain descriptors of matching features. The probability is learnt from
a large number of matching image patches. For each VW Wq, a fixed number of
alternative VWs that have the highest conditional probability P(W j|Wq) is recorded
in a list and used in multiple assignment; a query feature assigned to the VW Wq, it
is also assinged to the VWs in the list.

Post-filtering

As the naive BoVW framework suffers from many false matches of local features,
post-filtering approaches are proposed to eliminate unreliable feature matches. In
post-filtering approaches, after VW-based matching, matched feature pairs are further
filtered out according to the distances between them. For example, in Figure 2.3,
two features f1 and f3 are far from each other in feature vector space but in same the
Voronoi cell, thus they are matched in the naive BoVW framework. In Figure 2.3 (c),
post-filtering is applied; the query feature is matched with only the reference features
in the gray area, flitering out the feature f3. Post-filtering approches have similar
effect as using a large vocabulary because both of them improve accuracy of feature
matching. While post-filtering approaches try to improve the precision of feature
matches with only slight degradation of recall, simply using a large vocabulary
causes a considerable degradation of recall in feature matching [64].

In post-filtering approaches, after VW-based matching, distances between a query
feature and reference features that are assigned to the same VW should be calculated
for post-filtering. However, as exact distance calculation is undesirable in terms of
computational cost and memory requirement to store raw feature vectors. Therefore,
in [64, 77, 80, 81], feature vectors extracted from reference images are encoded
into binary codes (typically 32-128 bit codes) via random orthogonal projection
followed by thresholding for binarizing projected vectors. While all VWs share a
single random orthogonal matrix, each VW has individual thresholds so that feature
vectors are binarized into 0 or 1 with the same probability. These codes are stored in
an inverted index with image identifiers (sometimes with other information on the
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features. In a search step, after VW-based matching, Hamming distances between
codes of query and matched reference features are calculated. Matched features with
larger Hamming than a predefined threshold are filtered out, which considerably
improves the precision of matching with only slight degradation of recall.

In [82–84], a product quantization-based method is proposed and shown to
outperform other short codes like spectral hashing (SH) [85] or a transform coding-
based method [86] in terms of the trade-off between code length and accuracy in
approximate nearest neighbor search. In the PQ method, a reference feature vector
is decomposed into low-dimensional subvectors. Subsequently, these subvectors are
quantized separately into a short code, which is composed of corresponding centroid
indices. The distance between a query vector and a reference vector is approximated
by the distance between a query vector and the short code of a reference vector.
Distance calculation is efficiently performed with a lookup table. Note that the PQ
method directly approximates the Euclidean distance between a query and reference
vector, while the Hamming distance obtained by the HE method only reflects their
similarity.

Weighted Voting

In voting function, TF-IDF scoring [61] is often used. Some researches try to improve
the image retrieval accuracy by modifying this scoring. One directon to do this is
the modification of the standard IDF. In [87, 88], ℓp-norm IDF is proposed, which can
be considered as a generalized version of the standard IDF. The standard IDF weight
for the visual word zk is defined as:

IDF(zk) = log
N
nk
, (2.28)

where N denotes the number of images in the database and nk denotes the number
of images that contain zk. The ℓp-norm IDF is defined as:

pIDF(zk) = log
N∑

Ii∈Pk
wi,kv

p
i,k

, (2.29)

where vi,k denotes the occurrences of zk in the image Ii and wi,k is normalization term.
It is reported that when p is about 3-4, ℓp-norm IDF achieves better accuracy than
the standard IDF. In [89], BM25 with exponential IDF weights (EBM25) is proposed.
BM25 is a ranking function used for document retrieval and it includes the IDF term
in its definition. This IDF term is extended to the exponential IDF that is capable of
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suppressing the effect of background features. In [90], theoretical scoring method
is derived by formulating the image retrieval problem as a maximum-a-posteriori
estimation. The derived score can be used an alternative to the standard IDF.

The distances between the query and reference features obtained in the post-
filtering approach are aften exploited in weighted voting. In [91], the weight is
calculated as a Gaussian function of a Hamming distance between the query and
reference vector. In [77], the weight is calculated based on the Hamming distance
between the query and reference vector and the probability mass function of the
binomial distribution. In [92], the weight is calculated based on rank information
because a rank criterion is used in post-filtering in the literature, while in [83], the
weight is calculated based on ratio information.

Geometric Verification

Geometric Verification (GV) or spatial re-ranking is important step to improve
the results obtained by voting function [63, 70]. In GV, transformations between
the query image and the top-R reference images in the list of voting results are
estimated, eliminating matching pairs which are not consistent with the estimated
transformation. In the estimation, the RANdom SAmple Consensus (RANSAC)
algorithm or its variants [93, 94] are used. Then, the score is updated counting only
inlier pairs. As a transformation model, affine or homography matrix is usually
used.

In [44] a 4 Degrees of Freedom (DoF) affine transformation is estimated in two
stages. First, a Hough scheme estimates a transformation with 4 parameters; 2D
location, scale, and orientation. Each pair of matching regions generates these
parameters that vote to a 4D histogram. In the second stage, the sets of matches
from a bin with at least 3 entries are used to estimate a finer 2D affine transform.
In [63], three affine sub-groups for hypothesis generation are compared, with DoF
ranging between 3 and 5. It is shown that 5 DoF outperforms the others but the
improvement is small. Because affine-invariant Hessian regions [38] are used in [63],
each hypothesis of even 5 DoF affine transformation can be generated from only a
single pair of corresponding features, which greatly reduces the computational cost
of GV.

The above method utilizes local geometry represented by an affine covariant
ellipse in GV. Because storing the parameters of ellipse regions significantly increases
memory requirement, a method is proposed to learn discretized local geometry
representation by minimizing average reprojection error in the space of ellipses in
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[95]. It is shown that the representation requires only 24 bits per feature without
drop in performance.

Weak Geometric Consistency

Geometric verification explained above is very effective but costly. Therefore, it
is only applicable up to a few hundred images. To overcome this problem, Weak
Geometric Consistency (WGC) method is proposed in [64, 77], where WGC filters
matching features that are not consistent in terms of angle and scale. This is done by
estimating rotation and scaling parameters between a query image and a reference
image separately assuming the following transformation:xq

yq

 = s ×

cosθ − sinθ
sinθ cosθ

 × xp

yp

 + tx

ty

 , (2.30)

where (xq, yq)⊤ and (xp, yp)⊤ are the positions in query and reference image, s and θ
are scaling and rotation parameters, and (tx, ty)⊤ is translation. In order to efficiently
estimate the scaling and rotation parameters, each of feature matches votes to 1D
histograms of angle differences and log-scale differences. The score of the largest bin
among these two 1D histograms is used as image similarity. This scoring reduces the
scores of the images for which the points are not transformed by consistent angles
and scales, while a set of points consistently transformed will accumulate its votes
in the same histogram bin, keeping a high score.

In WGC, the log-scale difference histogram always has a peak corresponding to 0
(same scale) because most of feature detectors utilizes image pyramid, resulting that
most features are detected with the smallest scale. To solve this problem, in [80], the
absolute value of the translation (tx, ty)⊤ is estimated by voting instead of scaling and
rotation parameters. In [96–99], similarly, the translation (tx, ty)⊤ is estimated using
2D histogram instead of shrinking to 1D histogram of its absolute value. Because
the scaling and orientaton parameters in Eq. (2.30) are not considered in [96], the
method proposed is not scale and rotation invariant.

In [100], a new measure called Pattern Entropy (PE) is introduced, which measures
the coherency of symmetric feature matching across the space of two images similar
to WGC. This coherency is captured with two histograms of matching orientations,
which are composed of the angles formed by the matching lines and horizontal or
vertical axis in the synthesized image where two images are aligned horizontally
and vertically. As PE is not scale nor rotation invariant, the improved version of PE,



2.2 Image Representations 27

namely Scale and Rotation invariance PE (SR-PE), is proposed in [101]. In SR-PE,
rotation and scaling parameters are estimated similar to WGC. However, in SR-PE,
these parameters are estimated using two pairs of matching features because it does
not utilize scale and orientation parameters of local features. Therefore, it is not
applicable to all reference images.

In [102], three types of scoring methods based on weak geometric information are
proposed for re-ranking: location geometric similarity scoring, orientation geometric
similarity scoring, scale geometric similarity scoring. The orientation and scale
geometric similarity scorings are the same as WGC [64, 77]. The location geometric
similarity scoring is calculated by transforming the location information into distance
ratios to measure the geometric similarity; each of all prossible combination of two
matching pairs votes a score to 1D histogram, where each bin is defined by the log
ratio of the distances of two points in a query image and corresponding two points
in a reference image. The geometric similarity is defined by the score of the bin
with miximum votes. The location geometric similarity scoring cannot be integrated
with inverted index and is only applicable to re-ranking beucase it requires all
combination of matching features.

In [103] spatial-bag-of-features representation is proposed, which is a general-
ization of the spatial pyramid [66, 104]. The spatial pyramid is not invariant to
scale, rotation, nor translation. Spatial-bag-of-features utilizes a specific calibration
method which re-orders the bins of a BoVW histogram in order to deal with the
above transformations. In [105–107], contextual information is introduced to the
BoVW framework by bundling multiple features [105, 107] or extracting feature
vectors in multiple scales [106].

Query Expansion

In the text retrieval literature a standard method for improving performance is query
expansion, where a number of the highly ranked documents are integrated into
a new query. By doing so, additional information can be added to the original
query, resulting better search precision. Because the idea of the BoVW framework
is comes from the Bag-of-Words (BoW) in text retrieval, it is also natural to borrow
query expansion from text retrieval. In [70], various types of query expansions
are introduced and compared in the visual domain. There are some insightful
observations found in In [70]. Fistly, simply using the top K results for expansion
degrades search precision; false positives in the top K results make the expanded
queries less informative. Secondly, averaging geometrically verified results for
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expansion significantly improves the results because GV excludes false positives
from results to the original query. Furthermore, recursively performing this average
query expansion further improves the results. Finally, resolution expansion achieves
the best performance, which first clusters geometrically verified results into groups,
and then issues multiple expanded queries independently created from these groups.

In [108], three approaches are proposed in order to improve query expansion:
automatic tf-idf failure recovery, incremental spatial reranking, and context query
expansion. In automatic tf-idf failure recovery, after GV, if inlier ratio is smaller
than threshold, noisy VWs called confuser is estimated according to likelihood ratio.
Then, the original query is updated by removing confuser if it improves inlier ratio.
In incremental spatial reranking4, instead of performimg GV to the top K results
using the original query, the original query is incrementally updated at each GV
if sufficient number of inliers are found in the GV. In context query expansion, a
feature outside the bounding box 5 is added to an expanded query if it is consistently
found in multiple geometrically verified results.

In [55], discriminative query expansion is proposed, where a linear SVM is trained
using geometrically verified results as positive samples and results with lower scores
in voting as negative samples. The results are reranked according to the distances
from the boundary of the trained SVM.

Summary

In this section, the BoVW extensions were grouped into seven types of approaches:
large vocabulary, multiple assignment, post-filtering, weighted voting, geometric
verification, weak geometric consistency, and query expansion. These approaches
are complementary to each other and often used together. Table 2.1 summarizes the
literatures in which these approaches are proposed. We show which approaches are
used in the literatures and summarize the best results on publicly available datasets:
the UKB6, Oxford5k7, Oxford105k, Paris8, and the Holidays9 dataset. Oxford105k
consists of Oxford5k and 10k distractor images. There are several observations
through this summarization:

4Incremental spatial reranking is not a query expansion method, but a variant of GV (spatial
reranking). Therefore, it is applicable even if query expansion is not used.

5Here, it is assumed a query consists of a query image and a bounding box representing the target
object of the search.

6http://vis.uky.edu/ stewe/ukbench/
7http://www.robots.ox.ac.uk/ vgg/data/oxbuildings/
8http://www.robots.ox.ac.uk/ vgg/data/parisbuildings/
9http://lear.inrialpes.fr/ jegou/data.php
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• Large vocabulary or post-filtering is adopted in all of the literatures. These
approaches enhance the discreminative power of the BoVW framework and
thus are essential for accurate image retrieval system.

• Multiple assignment is also used in many literatures. This is because multiple
assignment can improve the recall of feature-level matching at the cost of small
increase of computational cost.

• Geometric verification and query expansion are used in many literatures to
boost the performance though geometric verification and query expansion are
not the main proposal of these literatures. This is because geometric verification
and query expansion are needed to achieve the state-of-the-art results on the
publicly available datasets. Therefore, we think the absolute values of the
accuracies are not directly reflecting the importances of the proposals.

• In several literatures, visual words are learnt using the test dataset. Visual
words learnt on the test dataset tend to achieve significantly better accuracy
than visual words learnt on an independent dataset. When considering the
results, we should be aware of this. In Table 2.1, we added ’*’ mark to the
literatures in which visual words are learnt on the datasets.

• While we did not specify the use of RootSIFT [55], RootSIFT has become a
de-facto standard descriptor due to its effectiveness and simplicity.
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2.2.2 Fisher Kernel and Fisher Vector

Definition

Fisher kernel is a powerful tool for combining the benefits of generative and
discriminative approaches [113]. Let X denote a data item (e.g. a feture vector or a
set of feature vector). Here, the generation process of X is modeled by a probability
density function p(X|λ) whose parameters are denoted by λ. In [113], it is proposed
to describe X by the gradient GX

λ of the log-likelihood function, which is also referred
to as the Fisher score:

GX
λ = ∇λL(X|λ), (2.31)

where L(X|λ) denotes the log-likelihood function:

L(X|λ) = log p(X|λ). (2.32)

The gradient vector describes the direction in which parameters should be modified
to best fit the data [114]. A natural kernel on these gradients is the Fisher kernel [113],
which is based on the idea of natural gradient [115]:

K(X,Y) = GX
λF−1
λ GY

λ . (2.33)

Fλ is the Fisher information matrix of p(X|λ) defined as

Fλ = EX[∇λL(X|λ) ∇λL(X|λ)T]. (2.34)

Because F−1
λ is positive semidefinite and symmetric, it has a Cholesky decomposition

F−1
λ = LT

λLλ. Therefore the Fisher kernel is rewritten as a dot-product between
normalized gradient vectors GX

λ with:

G
X
λ = LλGX

λ . (2.35)

The normalized gradient vector GX
λ is referred to as the Fisher vector of X [116].

GMM Fisher Vector

In [114], the generation process of feature vectors (SIFT) are modeled by the GMM,
and the diagonal closed-form approximation of the Fisher vector is derived. Then,
the performance of the Fisher vector is significantly improved in [116] by using
power-normalization and ℓ2 normalization. The Fisher vector framework has
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achieved promising results and is becoming the new standard in both image
classification [116, 117] and image retrieval tasks [118–120].

Let X = {x1, · · · , xt, · · · , xT} denote the set of low-level feature vectors extracted
from an image. and λ = {wi, µi,Σi, i = 1..N} denote the set of parameters for GMM
with N components. From Eq. (2.32) and an independence assumption where
x1, · · · , xT are independently generated, wehave:

L(X|λ) =
T∑

t=1

log p(xt|λ). (2.36)

The probability that xt is generated by GMM is:

p(xt|λ) =
N∑

i=1

wipi(xt|λ). (2.37)

The i-th component pi is given by

pi(xt|λ) =
exp

(
−

1
2 (x − µi)′Σ−1

i (x − µi)
)

(2π)D/2|Σi|
1/2 , (2.38)

where D is the dimensionality of the feature vector xt and | · | denotes the determinant
operator. In [114], it is assumed that the covariance matrices are diagonal because
any distribution can be approximated with an arbitrary precision by a weighted sum
of Gaussians with diagonal covariances.

Let γt(i) denote the occupancy probability (or posterior probability) of xt being
generated by the i-th component of GMM:

γt(i) = p(i|xt) =
wipi(xt|λ)∑N

j=1 w jp j(xt|λ)
. (2.39)
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Letting the subscript d denote the d-th dimension of a vector, Fisher scores corre-
sponding to GMM parameters are obtained as

∂L(X|λ)
∂wi

=

T∑
t=1

[
γt(i)
wi
−
γt(1)
w1

]
for i ≥ 2, (2.40)

∂L(X|λ)
∂µid

=

T∑
t=1

γt(i)
[
xtd − µid

σ2
id

]
, (2.41)

∂L(X|λ)
∂σid

=

T∑
t=1

γt(i)
[
(xtd − µid)2

σ3
id

−
1
σid

]
. (2.42)

The gradient vector GX
λ in Eq. (2.31) is obtained by concatenating these partial

derivatives.

Next, the normalization terms, the Fisher information matrix Fλ in Eq. (2.34)
should be computed. Let fwi , fµid , and fσid denote the terms on the diagonal of
Fλ which correspond to L(X|λ)/∂wi, ∂L(X|λ)/∂µid, and ∂L(X|λ)/∂σid respectively.
In [114], these terms are obtained approximately as

fwi = T
( 1
wi
+

1
w1

)
, (2.43)

fµid =
Twi

σ2
id

, (2.44)

fσid =
2Twi

σ2
id

. (2.45)

The gradient vector in Eq. (2.40) is related to the BoVW because the BoVW can be
considered as the relative numbers of occurrences of words given by 1

T

∑T
t=1 γt(i) (1 ≤

i ≤ N). While the BoVW captures 0-th order statistics, the Fisher kernel also captures
1-st and 2nd order statistics, resulting (2D+ 1)N− 1 dimensional vector. The gradient
vector corresponding to 0-th order statistics (L(X|λ)/∂wi) is sometimes not used
because it does not contribute to performance [114]. In this case, the dimensionality
of the GMM Fisher vector becomes 2ND.

Improved Fisher Vector

Although the above Fisher vector has achieved moderate performance, the advantage
of this approach is considered to be its efficiency: it can create disctiminative
high dimensional vector with small vocabularies (codebook size). However, after
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improved Fisher vector is proposed in [116], it becomes widely used in both
image classification [117] and image retrieval problems [118, 120]. Improved Fisher
vector is calculated by applying two normalizations: power-normalization and ℓ2
normalization. Power-normalization is to apply the following function to each of
dimensions of the original Fisher vector:

f (z) = sign(z)|z|α. (2.46)

The value of α = 0.5 is often used for reasonable improvement.

Other Extensions

Fisher vectors of the other probabilistic model is also proposed. In [121], the Fisher
vectors of Laplacian Mixture Model (LMM) and a Hybrid Gaussian-Laplacian
Mixture Model (HGLMM) are proposed. In [122], the Fisher vector is generalized
to mixtures of non-Gaussian model in a unified manner. In [123], the Fisher vector
of Bernoulli Mixture Model (BMM) is derived. The Fisher vector is also improved
by being combined with recent deep learning architechtures in image classification
problems [124, 125] and image retrieval problems [126, 127].

2.2.3 Vector of Locally Aggregated Descriptors

In [119], Jégou et al. have proposed an efficient way of aggregating local features
into a vector of fixed dimension, namely Vector of Locally Aggregated Descriptors
(VLAD). In the construction of VLAD, VWs c1, · · · , ci, · · · , cN are first created by
the k-means algorithm in the same way as in the BoVW framework. Then, each
feature vector x is assigned to the closest VW ci (i = NN(x)) in the visual codebook,
where NN(x) denotes the identifier of VW closest to x. For each of the visual words,
the residual x − ci from assigned feature vector x is accumulated, and the sums of
residuals are concatenated into a single vector, VLAD. More precisely, the VLAD
vector v is defined as

vi j =
∑

x s.t. NN(x)=i

[
x j − ci j

]
, (2.47)

where x j and ci j denote the j-th component of the feature vector x and the i-th VW,
respectively. Finally, the VLAD vector is ℓ2-normalized as v := v/||v||2. VLAD can be
considered as the simplified non-probabilistic version of the partial GMM Fisher
vector corresponding to only the parameter µid [120]. Although the performance of
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VLAD is about the same or a little worse than the Fisher vector [120], the VLAD has
been widely used in image retrieval due to its simplicity. There is many literature
which extends the original VLAD [119]. In the following, these extensions are briefly
reviewed.

Modified Normalizations

Many literature focuses on the normalization step in order to improve the VLAD
representation. In [120], power-normalization is introduced as for the Fisher vector:

vi j := sign(vi j)|vi j|
α, (2.48)

with 0 ≤ α ≤ 1. This power-normalization is followed by ℓ2 normalization. It
have been shown that power-normalization consistently improves the quality of the
VLAD representation [120]. One interpretation of this improvement is that it reduces
the negative influence of bursty visual elements [91]. Regarding the parameter α,
α = 0.5 is often used because it empirically shown to lead to near-optimal results.
Therefore, power-normalization is also referred to as Signed Square Root (SSR)
normalization [128, 129].

In [129], the other normalization is proposed, called intra-normalization. In
intra-normalization, the sum of residuals is independently ℓ2 normalized within
each VLAD block vi:

vi j := vi j/||vi||2. (2.49)

Intra-normalization is also followed by ℓ2 normalization. It is claimed that this
normalization completely suppresses the burstiness effect regardless of the amount of
bursty elements while power-normalization only discounts the burstiness effect [129].
After power-normalization, the standard deviations of the VLAD vectors become
similar among all dimensions. In other words, all dimensions can equally contribute
to image similarity, improving the performance of the VLAD representation.

In [130], residual-normalization is proposed, where the residuals are normalized
before summation so that all feature vectors contribute equally. With residual-
normalization, Eq. (2.47) is modified to

vi j =
∑

x s.t. NN(x)=i

[ x j − ci j

||x − ci||2

]
. (2.50)
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It is shown that residual-normalization improves the performance of the VLAD
representation if it is used in conjunction with power-normalization while it does not
without power-normalization [130]. In [131], triangulation embedding is proposed.
It can be seen a modified version of VLAD, where normalized residuals from all
centroids are aggregated as

vi j =
∑

x

[ x j − ci j

||x − ci||2

]
. (2.51)

It is similar to residual-normalization in Eq. (2.50) but only residuals from the nearest
centroids are aggregared in Eq. (2.50).

Other Extentions

In [132], it is proposed to modify the summation term in Eq. (2.47) to mean or median
operations. It is claimed that the mean aggregation outperforms the original sum
aggregation in terms of an image-level Receiver Operating Characteristic (ROC)
curve analysis. However, in [133], it is shown that the original sum aggregation is
still better in terms of image retrieval performance.

In [128, 120], it is proposed to perform Principal Component Analysis (PCA)
to input vector x before aggregation, which decorrelates and whiten input vector.
Decorrelating the input vector x is very important because the VLAD implicitly
assumes that the covariance matrices of x is isotropic. In [130], Local Coordinate
System (LCS) is proposed, where the residuals to be summed are rotated by a rotation
matrix Qi

vi j =
∑

x s.t. NN(x)=i

Qi

[
x j − ci j

]
. (2.52)

The VW-specific rotation matrix Qi is obtained by learning a local PCA per VW. This
is a contrast to the approach in [120], where the input vector x is rotated by a globally
learnt PCA matrix. LCS has no effect if power-normalization is not applied (α = 1).
However, it is shown that LCS with power-normalization outperforms the global
rotation with power-normalization.
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2.3 Deep Learning for Image Retrieval

Starting from ImageNet Large-scale Visual Recognition Challenge (ILSVRC) in 201210,
where Convolutional Neural Networks (CNN) [134] had beaten the traditional state-
of-the-art framework (i.e. SIFT feature + Fisher vector), CNN has become a de
facto standard for image recognition tasks. Following this trend, the deep learning
approach also began to be applied to image retrieval tasks. In this section, we briefly
review recent deep learning approaches related to image retrieval.

Early works that have applied deep learning to image retrieval can be found
in [135–138, 126]. In [135], the CNN architecture used in [134] is applied for image
retrieval. Different from image recognition tasks, the best performance is achieved at
the layer that is two levels below the outputs, not the very top of the network, which
is consistent with the results of subsequent papers11. In [135], the performance of
CNN in [134] is reported to be comparable to the Fisher vector or VLAD methods so
far. In [136–138], a comparative study of CNN and Fisher vector is performed. In
[126], manys best practices for CNN is presented.

While the above methods utilizes CNN to extract a single global feature, there
are different approaches to achieve better performance. In [139], it is shown that
CNN can be applied to keypoint prediction task and find correspondences between
objects. In [140, 141], CNN features are densely extracted and the Fisher vector
or VLAD framework is used for pooling (aggregation). In [142], the dense CNN
features from multiple networks are indexed by traditional inverted index. In [143],
a unified framework for both of image retrieval and classification is proposed, where
CNN features are extracted from multiple object proposals for each image, and the
Naive-Bayes Nearest-Neighbor (NBNN) search [144] is performed to calculate the
distance between a query image and reference images. In [145], convolutional features
are extracted from every position of different layers on CNN, and then these features
are encoded by the VLAD framework. It is reported that this framework achieves the
best performance in very low-dimensional representation. While the above methods
utilizes Fisher vector or VLAD for aggregation, in [146], it is claimed that the simple
aggregation method based on sum pooling provides the best performance for deep
convolutional features.

Deep learning is also applied for patch-level tasks. In [147], in order to extract
patch-level descriptors, Mairal et al. proposed a deep convolutional architecture

10http://www.image-net.org/challenges/LSVRC/2012/
11In many papers, it is reported that the best performance has been achieved at the first fully

connected layer.

http://www.image-net.org/challenges/LSVRC/2012/
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based on Convolutional Kernel Network (CKN) [148], which is an unsupervised
framework to learn convolutional architectures. In [149], a Siamese network is used
to learn discriminant patch representations, where an aggressive mining strategy
is adopted to handle hard negative and hard positive pairs. In [150], similarity
between image patches is directly learnt with CNN. While several types of network
are proposed and compared, it is reported that a two-channel and two-stream
architecture achieved the best performance, where two patches to be compared are
fed to the first convolutional layer directly (cf. a Siamese network). For each patch,
two regions with different scales are used as an input of the network. Similarly, in
[151], a patch matching system called MatchNet is proposed to learn a CNN for
local feature description as well as a network for robust feature comparison. In
[152], a new regression-based approach is proposed to extract feature points that are
especially robust repeatable under temporal changes. In [153], a learning scheme
based on CNN is introduced to estimate a canonical orientation for local features.
Because it is difficult to explicitly define a correct canonical orientation, it is proposed
to implicitly define a canonical orientation to be learnt such that minimizes the
distances between descriptors of correct feature pairs. In [154], a DNN architecture
is proposed that combines the three components of standard pipelines for local
feature matching, i.e detection, orientation assignment, and description, into a single
differentiable network.

There are several approaches to compress CNNs in order to reduce memory
requirements and/or speed up the recognition. In [155], it is proposed to utilize
product quantization [82] to compress CNN. In [156], a low-rank matrix approxi-
mation is used to compress CNNs. In [157], it is proposed to binarize CNNs and
input signals to compress CNNs and achieve faster convolutional operations. In
[158, 159], pruning, quantization, and huffman coding is applied to CNNs to achieve
an energy-efficient engine.





Chapter 3

Fisher Vector for Binary Features

Recently, the Fisher vector representation of local features has attracted much
attention because of its effectiveness in both image classification and image retrieval.
Another trend in the area of image retrieval is the use of binary features, such as
ORB, FREAK, and BRISK. Considering the significant performance improvement for
accuracy in both image classification and retrieval by the Fisher vector of continuous
feature descriptors, if the Fisher vector were also to be applied to binary features,
we would receive similar benefits in binary feature-based image retrieval and
classification. In this chapter, we derive the closed-form approximation of the Fisher
vector of binary features modeled by the Bernoulli mixture model. We also propose
accelerating the Fisher vector by using the approximate value of posterior probability.
Experiments show that the Fisher vector representation significantly improves the
accuracy of image retrieval compared with a bag of binary words approach.

3.1 Introduction

With the advancement of both stable interest region detectors [27] and robust and
distinctive descriptors [26], local feature-based image or object retrieval has attracted
a great deal of attention. In local feature-based image retrieval or recognition, each
image is first represented by a set of local features X = {x1, · · · , xt, · · · , xT}, where T is
the number of local features. The set of features X is then encoded into a fixed length
vector in order to calculate any (dis)similarity between sets of features. The most
frequently used method is a bag-of-visual words (BoVW) representation [61], where
feature vectors are quantized into visual words (VWs) using a visual codebook that
result in a histogram representation of VWs.
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Recently, the Fisher vector representation [114] has attracted much attention
because of its effectiveness. The Fisher vector is defined by the gradient of log-
likelihood function normalized with the Fisher information matrix. In [114], feature
vectors are modeled by the Gaussian mixture model (GMM), and a closed form
approximation is first proposed for the Fisher information matrix of GMM. Then,
the performance of the Fisher vector is improved in [116] by using power and ℓ2
normalization. Because the Fisher vector can represent higher order information
than the BoVW representation, it has been shown that it can outperform the BoVW
representation in both image classification [116] and image retrieval tasks [118–120].

Another trend in the area of image retrieval is the use of binary features, such as
Oriented FAST and Rotated BRIEF (ORB) [19], Fast Retina Keypoint (FREAK) [21],
Binary Robust Invariant Scalable Keypoints (BRISK) [20], KAZE features [160],
Accelerated-KAZE (A-KAZE) [22], Local Difference Binary (LDB) [161, 162], and
Learned Arrangements of Three patCH codes (LATCH) [23]. In addition to these
methods that extract binary features directly, there are many methods that encode
continuous feature vectors (e.g., SIFT) into compact binary codes [163–169]. Binary
features are one or two orders of magnitude faster than the Scale Invariant Feature
Transform (SIFT) [44] or Speeded Up Robust Features (SURF) [47] features in
detection and description, while providing comparable performance [19, 30]. These
binary features are especially suitable for mobile visual search or augmented reality
on mobile devices [161]. While the Fisher vector is widely applied to continuous
features (e.g., SIFT) that can be modeled by GMM, to the best of our knowledge, there
has been no attempt to apply the Fisher vector to the abovementioned recent binary
features for the purpose of image retrieval. Considering the significant performance
improvement for accuracy in both image classification and retrieval by the Fisher
vector of continuous features, if the Fisher vector were also to be applied to binary
features, we would receive similar benefits in binary feature-based image retrieval
and classification.

In this chapter, we propose to apply the Fisher vector representation to binary
features to improve the accuracy of binary feature-based image retrieval. Table 3.1
shows the position of the proposal of this chapter. Our main contribution is to model
binary features using the Bernoulli mixture model (BMM) and derive the closed-form
approximation of the Fisher vector of BMM [170]. Experimental results show that
the proposed Fisher vector outperforms the BoVW method on various types of
objects. In addition, we also propose a fast approximation method to accelerate
the computation of the proposed Fisher vectors by one order of magnitude with
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Table 3.1: Position of this chapter.

Feature type BoVW Fisher Vector
Continuous [61] [114]

Binary [17] This chapter

comparable performance. In the experiments, we evaluate the effectiveness of both
the proposed Fisher vector representation of binary features and their associated
vector normalization method. In particular, we demonstrate that a normalization
method, originally proposed for the other vector representation, also works well for
the proposed Fisher vector. The proposed Fisher vector representation of binary
features is general and not restricted to image features; it is also expected to be
applicable to other modalities such as audio signals [171, 172].

3.2 Fisher Vector for Binary Features

In this section, we model binary features with the Bernoulli distribution, and derive
the Fisher vector representation of binary features.

3.2.1 Bernoulli Mixture Model

Let xt denote a D-dimensional binary feature out of T binary features X = {x1, · · · , xt, · · · , xT}

extracted from an image. In modeling binary features, it is straightforward to adopt a
single multivariate Bernoulli distribution. However, although many binary descrip-
tors are designed so that bits of resulting binary features are uncorrelated [19], there
are still strong dependencies among bits. Therefore, a single multivariate Bernoulli
component will be inadequate to cope with the kind of complex bit dependencies that
often underlie binary features. This drawback is overcome when several Bernoulli
components are adequately mixed. In this chapter, we propose to model binary
features with Bernoulli mixture model (BMM). The use of BMM instead of a single
multivariate Bernoulli distribution will be justified in the experimental section.

Let λ = {wi, µid, i = 1, · · · ,N, d = 1, · · · ,D} denote a set of parameters for a
multivariate Bernoulli mixture model with N components, and xtd represents the
d-th bit of xt. Given the parameter set λ, the probability density function of T binary
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features X is described as:

p(X|λ) =
T∏

t=1

p(xt|λ),

p(xt|λ) =
N∑

i=1

wipi(xt|λ),

pi(xt|λ) =
D∏

d=1

µxtd
id (1 − µid)1−xtd . (3.1)

In order to estimate the values of the parameter set λ, given a set of training
binary features x1, · · · , xs, · · · , xS, the expectation-maximization (EM) algorithm is
applied [173]. In the expectation step, the occupancy probability γs(i) (or posterior
probability p(i|xs, λ)) of xs being generated by the i-th component of BMM is calculated
as

γs(i) = p(i|xs, λ) =
wipi(xs|λ)∑N

j=1 w jp j(xs|λ)
. (3.2)

In the maximization step, the parameters are updated as

Si =

S∑
s=1

γs(i), wi = Si/S, µid =
1
Si

S∑
s=1

γs(i)xsd. (3.3)

In our implementation, parameter wi is initialized with 1/N, and µid is with uniform
distribution U(0.25, 0.75). From our experience, these initial parameters do not have
a large impact on the final result.

3.2.2 Deriving the Fisher Vector of BMM

In this section, we derive the Fisher vector of BMM. In order to calculate the Fisher
vector GX

λ in Eq. (2.35), the Fisher score GX
λ in Eq. (2.31) and the Fisher information

matrix Fλ in Eq. (2.34) should be calculated.
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Letting GX
µid

denote the Fisher score w.r.t. the parameter µid ∈ λ, GX
µid

is calculated
as:

GX
µid
=

1
T
∂L(X|λ)
∂µid

(3.4)

=
1
T

T∑
t=1

∂L(xt|λ)
∂µid

=
1
T

T∑
t=1

1
pi(xt|λ)

∂pi(xt|λ)
∂µid

, (3.5)

where
∂pi(xt|λ)
∂µid

= (−1)1−xtd

D∏
e=1,e,d

µxte
ie (1 − µie)1−xte . (3.6)

Finally we obtain:

GX
µid
=

1
T

T∑
t=1

γt(i)
(−1)1−xtd

µxtd
id (1 − µid)1−xtd

, (3.7)

where γt(i) is the occupancy probability defined in Eq. (3.2).

Then, we derive the approximate Fisher information matrix of BMM under the
following three assumptions [114]: (1) the Fisher information matrix Fλ is diagonal,
(2) the number of binary features xt extracted from an image is constant and equal
to T, and (3) the occupancy probability γt(i) is peaky; there is one index i such that
γt(i) ≈ 1 and that ∀ j , i, γt( j) ≈ 0.

As we assume the Fisher information matrix is diagonal, Eq. (2.34) is approximated
as Fλ ≈ diag(Fµ11 , · · · ,FµND), where Fµid denotes the Fisher information w.r.t. µid:

Fµid = E

(∂L(X|λ)
∂µid

)2 . (3.8)
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Assuming that binary features are independently generated and the number of
binary features is T, Eq. (3.8) can be expanded as:

Fµid = E

(∂L(X|λ)
∂µid

)2 (3.9)

= E


 T∑

t=1

∂L(xt|λ)
∂µid


2 (3.10)

=

T∑
t=1

E

(∂L(xt|λ)
∂µid

)2 + 2
∑

1≤t<s≤T

E
[
∂L(xt|λ)
∂µid

]
E
[
∂L(xs|λ)
∂µid

]
. (3.11)

As the parameter set λ is estimated with maximum-likelihood estimation, we have:

E
[
∂L(xt|λ)
∂µid

]
= 0.

Using the value of the Fisher score in Eq. (3.7), we get:

E

(∂L(xt|λ)
∂µid

)2 = ∫
xt

p(xt|λ)
γ2

t (i)(
µxtd

id (1 − µid)1−xtd

)2 dxt (3.12)

=

∫
xtd=1

p(xt|λ)
γ2

t (i)
µ2

id

dxt +

∫
xtd=0

p(xt|λ)
γ2

t (i)
(1 − µid)2 dxt. (3.13)

Using the assumption that the occupancy probability γt(i) is peaky, we approximate
γ2

t (i) as γt(i). Using the following equations,

∫
xtd=1

p(xt|λ)γt(i)dxt = wi

N∑
j=1

w jµ jd, (3.14)

∫
xtd=0

p(xt|λ)γt(i)dxt = wi

N∑
j=1

w j(1 − µ jd), (3.15)

we finally obtain:

Fµid = Twi


∑N

j=1 w jµ jd

µ2
id

+

∑N
j=1 w j(1 − µ jd)

(1 − µid)2

 .
The Fisher vector GX

λ is obtained with the concatenation of normalized Fisher scores
F−1/2
µid

GX
µid

(i = 1, · · · ,N, d = 1, · · · ,D).
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3.2.3 Vector Normalization

The Fisher vector is further normalized with power normalization and ℓ2 normal-
ization [116]. Given a Fisher vector z = GX

λ , the power-normalized vector f (z) is
calculated as

f (z) = sign(z)|z|α. (3.16)

In experiments, we set α = 0.5 as recommended in [116]. After the power normal-
ization, ℓ2 normalization is performed to f (z), resulting in the final Fisher vector
representation of the set of binary features. In addition, we propose to use intra
normalization [129] for this Fisher vector instead of the power and ℓ2 normalization.
The intra normalization method was originally proposed for the VLAD representa-
tion described in Section 2.2.3, not for the Fisher vector. However, the purpose of
intra normalization is to alleviate the problem of burstiness in visual words [91, 129]
and, this is the same as that of power normalization. Therefore, it is also expected to
work well for the Fisher vector. In the case of the Fisher vector, intra normalization
is done by performing ℓ2 normalization within each BMM component.

3.2.4 Fast Approximated Fisher Vector

The most computationally expensive part of the proposed Fisher vector is the
calculation of the occupancy probability γt(i) in Eq. (3.7) because Fµid does not depend
on the input vector X and can be precomputed. In this chapter, we also propose to
accelerate the proposed Fisher vector by using the approximate value of γt(i).

Firstly, each i-th component of BMM is converted into a representative binary
vector yi = (yi1, · · · , yiD) as

yid =

 1 µid ≥ 0.5

0 µid < 0.5.
(3.17)

Then, for each xt ∈ X, the most similar representative binary vector yî is calculated
by î = arg mini |xt − yi|. This involves only the calculation of Hamming distance and
can be done very fast. Finally, we obtain approximated γ′t(i) as

γ′t(i) =

 1 i = î

0 i , î.
(3.18)

This approximation is also based on the assumption that the occupancy probability
γt(i) is peaky.
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Figure 3.1: Example images from the Stanford MVS dataset. Images in the top row
are examples of reference images and images in the bottom row are examples of
query images.

3.3 Experiment

In the experiments, the Stanford mobile visual search dataset1 is used to evaluate the
effectiveness of the proposed Fisher vector in image retrieval. The dataset contains
camera-phone images of CD covers, books, business cards, DVD covers, outdoor
landmarks, museum paintings, print documents, and video clips. While it includes
eight classes of images, we mainly use general CD class images in this chapter. These
images consist of 100 reference images and 400 query images. Because some query
images are too large (10M pixels), all images are resized so that the longest sides of
the images are less than 640 pixels, while keeping the original aspect ratio. Figure 3.1
shows example images from the dataset.

Dissimilarity between two images is defined by the Euclidean distance between
either the BoVW or the Fisher vector representations of the images. As an indicator
of the retrieval performance, mean average precision (MAP) [62, 77] is used. For each
query, a precision-recall curve is obtained based on the retrieval results. Average
precision is calculated as the area under the precision-recall curve. Finally, the MAP
score is calculated as the mean of the average precisions over all queries.

As a binary feature, we adopt the ORB [19] descriptor, which is one of the
most frequently used binary features. An implementation of the ORB descriptor is
available in an open source library2. On average, 900 features are extracted from

1http://www.stanford.edu/~dmchen/mvs.html
2http://opencv.org/

http://www.stanford.edu/~dmchen/mvs.html
http://opencv.org/
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(a)

A

B

(b)

Figure 3.2: (a) All point pairs of 256 binary tests used in the ORB descriptor. (b) Five
tests corresponding to the bits with the top five probabilities µid of being 1 (red) and
0 (blue). A randomly selected component out of N = 32 components is shown.

four scales. The parameter set λ is estimated with the EM algorithm using one
million ORB binary features extracted from the MIR Flickr collection3. The following
experiments were performed on a standard desktop PC with a Core i7 970 CPU.

3.3.1 Evaluating BMM in terms of Log-likelohood

First, we evaluate the validity of modeling binary features with BMM. To do this, we
use 1M training binary features to estimate the parameter set of BMM and use 100K
testing binary features to calculate log-likelihood for five different binary features:
BIREF [57], BRISK [20], FREAK [21], ORB [19], and Random. The default parameters
in OpenCV 3.0 are used for these binary features. Here, Random is an ideal binary
feature that is artificially created so that the mean value of each bit becomes 0.5
and bits are independent. Figure 3.4 shows mean log-likelihood 1/T log p(X|λ) of
BMM for different binary features in terms of N, where X is the set of testing binary
features with the size of T. We can see that the mean log-likelihood for Random is
constant at all N and is almost the same as theoretical value log 1/2128

≈ −69.3. This
indicates that it is not appropriate to model really ideal binary features with BMM
because there is no underlying bit dependency. On the contrary, for the other real
binary features, the mean log-likelihood becomes higher as N increases. This implies
that there are complex underlying bit dependencies in these binary features and

3http://press.liacs.nl/mirflickr/

http://press.liacs.nl/mirflickr/
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BMM with larger N can capture these dependencies more appropriately. Among
four real binary features, the mean log-likelihood for BRIEF is larger than that for
the others. This result is reasonable because the BRIEF feature is created by random
binary tests that are not optimized, resulting in highly dependent bits and thus BMM
works more effectively. On the other hand, the mean log-likelihood for ORB is the
smallest among the other real binary features. This is because the ORB descriptor is
highly optimized so that the average value of each resulting bit is close to 0.5, and
bits are not correlated. From this point of view, we can say that the ORB descriptor
is the closest to the ideal binary feature. In the following experiments, we focus on
the ORB features.

3.3.2 Clustreing Effect

We investigate the clustering results generated from the estimation of the parameter
set λ of BMM with N = 32 components. Figure 3.2 (a) represents all point pairs
(ad, bd) of the 256 binary tests used in the ORB descriptor explained in Section 2.1.2.
Figure 3.2 (b) visualizes a part of the parameter sets λ of a randomly selected
component out of N = 32 components. In each figure, red (blue) arrows represent
five tests corresponding to the five largest (smallest) µid. The arrows are drawn
from ad to bd, and µid represents the probability that ad is brighter than bd. Therefore,
the pixel at the head of a red arrow tends to be brighter than the tail of the red
arrow while the pixel at the head of a blue arrow tends to be darker than the tail of
the blue arrow. We can see that the binary tests with the largest and the smallest
µid concentrate on small areas (e.g., between the areas A and B in Figure 3.2 (b)).
Thus, Figure 3.2 implies that some bits of the ORB descriptor are highly correlated
and that BMM successfully captures this correlation. The result justifies the use of
BMM instead of single multivariate Bernoulli distribution to model binary features.
Figure 3.3 visualizes a part of the parameter sets λ corresponding to all of the N = 32
components.

3.3.3 Impact of Normalization

The performance of the Fisher vector of binary features is evaluated in terms of image
retrieval accuracy. In particular, the effect of the normalization methods described
in Section 3.2.3 is investigated. The following six methods are compared: (1) bag
of binary words approach with 1024 centroids (BoBW) [17, 18], (2) Fisher vector
without normalization (FV), (3) Fisher vector with ℓ2 normalization (L2 Norm), (4)



3.3 Experiment 53

Table 3.2: Comparison of the proposed method with the BoVW method on eight
classes

cd book card dvd
Prop 0.785 0.892 0.377 0.895

BoVW 0.623 0.625 0.179 0.472
landmark painting document video

Prop 0.179 0.676 0.472 0.840
BoVW 0.064 0.482 0.208 0.559

Fisher vector with power normalization (P Norm), and (5) Fisher vector with both
power and ℓ2 normalization (P+L2 Norm). (6) Fisher vector with intra normalization
(In Norm).

Figure 3.5 shows a comparison of the Fisher vector and BoBW representations
applied to binary features on eight classes. The accuracy of the Fisher vector without
any normalization (FV) is disappointing compared with the BoBW framework. If
ℓ2 or power normalization is adopted, the accuracy of the Fisher vector is signif-
icantly improved. The combination of the two normalizations further improves
the performance, which is consistent with the case of SIFT+GMM [116]. A little
surprisingly, in many casese, the intra normalization method outperforms the other
normalization methods. With appropriate normalization methods, the accuracy
improves as the number N of components increases, which is also consistent with
the case of SIFT+GMM [120]. Table 3.2 shows the accuracy of the proposed method
(In Norm, N = 512) and the BoVW method on eight classes. We can see that the
proposed Fisher vector consistently outperforms the BoVW method on different
datasets. In particular, the difference of accuracy between the proposed method
and the BoVW method is relatively larger for book, card, dvd, document, and video
classes. These classes includes many simple edges and corners (e.g., logo or text),
and binary features extracted from these edges and corners are similar to each other.
In the case of BoVW method, these binary features tend to be quantized into the
same VW and less discriminative. On the other hand, the proposed Fisher vector
can capture the "difference" from the components of BMMs; therefore it is more
discriminative, resulting in better results.

3.3.4 Performance for Various String Lengths

Next, we investigate the impact of the length of the binary strings on accuracy. In
this experiment, the first D′ bits of the full 256-bit string are used. This is reasonable



54 Fisher Vector for Binary Features

because, in the ORB algorithm, binary tests are sorted according to their entropies;
the leading bits are more important.

Figure 3.6 shows the accuracy of the Fisher vector with intra normalization
(N = 512) as a function of the number of components, where the length of binary
strings D′ varies from 16 to 256. We can see that the Fisher vector of longer binary
strings achieves better accuracy. However, the gain becomes smaller as the binary
string becomes longer. This is because the ending bits tend to be correlated to
other bits and thus are less informative. Therefore, we can use shorter strings for
efficiency at the cost of accuracy. Because the computational cost of the Fisher vector
is proportional to ND′4, the other choice to reduce the computational cost is to use
smaller N. Figure 3.6 indicates that it is better to use shorter strings down to 64-bit
strings instead of using smaller N. For instance, the MAP score of 0.733 at N = 256
and D′ = 64 is better than that of 0.714 at N = 64 and D′ = 256. Otherwise, it is better
to use smaller N instead of using smaller D′, e.g. 0.639 at N = 256 and D′ = 32 v.s.
0.663 at N = 32 and D′ = 256. However, in this paper, we use full 256-bit strings in
the other experiments to make the most of the ORB descriptor.

3.3.5 Increasing Database Size

We investigate the performance of the Fisher vector when the size of database
becomes large. In order to increase the size of database, we use images in the MIR
Flickr collection as a distractor in the same way as in [77]. Figure 3.7 compares
the Fisher vector with intra normalization (N = 512, D′ = 256) and the BoBW
representation with the different numbers of distractors. In Figure 3.7, 0, 100, 1,000,
and 10,000 distractor images are added to 100 reference images, resulting that the
size of database becomes 100, 200, 1,100, and 10,100 respectively. We can see that
the Fisher vector achieves better performance for all database sizes. Although the
accuracy of both the Fisher vector and the BoBW representations drops as the size of
the database increases, the degradation of the Fisher vector is relatively small. This
is because the Fisher vector can represent higher order information than the BoBW
representation and is more discriminating even with larger database sizes. It can
be said that the effectiveness of the proposed Fisher vector representation becomes
more significant when the database size is increased.

4This is required in calculating the occupancy probability γt(i), which is the most computationally
expensive part of the propsoed Fisher vector as described in Section 3.2.4.
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Table 3.3: Average degradation of the approximated Fisher vector on eight classes

cd book card dvd
6.4% 4.9% 6.8% 8.3%

landmark painting document video
3.0% 4.1% 7.8% 3.9%

3.3.6 Evaluation of Fast Approximated Fisher Vector

Finally, we evaluate the performance of the approximated Fisher vector described in
Section 3.2.4. Figure 3.8 compares the approximated and exact Fisher vector with
intra normalization (D′ = 256). The distractor images in Section 3.3.5 are not used in
this experiment. It can be seen that the approximated Fisher vector is one order of
magnitude faster than the exact Fisher vector while the degradation of accuracy is
only 6.4% on average and 1.6% for N = 512. Table 3.3 shows average degradation
of the MAP score on eight classes when the approximated Fisher vector with intra
normalization (D′ = 256) is adopted. We can see that there is not so much difference
in degradation of accuracy among different classes.

This approximated Fisher vector uses two approximations. The first one is the
approximation of the occupancy probability γt(i); we approximate γt(i) with the
largest value to 1 and the others to 0 as Eq. (3.18). This is based on the assumption
that γt(i) is peaky. Figure 3.9 (a) shows the distribution of maximum occupancy
probability maxi γt(i) for N = 512. We can confirm that maxi γt(i) is near to 1 in
most cases as expected. The other approximation is that the component with
maximum occupancy probability is approximately obtained as î = arg mini |xt − yi|

using representative binary vectors defined in Eq. (3.17). Figure 3.9 (b) shows the
accuracy of this approximation; the probability that arg mini |xt − yi| = arg maxi γt(i).
We can see that although the accuracy declines as N increases, the accuracy of this
approximation is still 57% even for N = 512. As the final approximated Fisher vector
is created using a number of feature vectors, this approximation works well as shown
in Figure 3.8. The final approximated Fisher vector is created using a number of
feature vectors, this approximation works well as shown in Figure 3.8.

3.4 Summary

In this chapter, we proposed the application of the Fisher vector representation to
binary features to improve the accuracy of binary feature-based image retrieval.
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We derived the closed-form approximation of the Fisher vectors of binary features
as modeled by the Bernoulli mixture model. In addition, we also proposed a fast
approximation method that accelerates the computation of the proposed Fisher
vectors by one order of magnitude with comparable performance. The effectiveness
of the Fisher vectors of binary features was confirmed. There were some interesting
observations; for example, the performance of the Fisher vector without power
and ℓ2 normalization was very poor, while the Fisher vector with power and
ℓ2 normalization outperformed the BoBW framework. The effectiveness of the
proposed Fisher vector representation becames more significant when the database
size increased. Furthermore, we have demonstrated that the intra normalization
method originally proposed for VLAD also worked well for the proposed Fisher
vector and outperformed the conventional normalization methods. This result
encourages us to apply the intra normalization method to the Fisher vector of GMM.
In future, we will apply the Fisher vector of binary features to image classification
problems. We also expect that the proposed Fisher vector representation can also be
successfully applied to other modalities such as audio signals.
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Figure 3.3: Five tests corresponding to the bits with the top five probabilities µid of
being 1 (red) and 0 (blue). N = 32 components are shown.
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Figure 3.4: Log-likelihood of BMM for different binary features in terms of N.
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Figure 3.5: Comparison of the Fisher vector and BoBW representations applied to
binary features on eight classes
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Figure 3.6: Accuracy of the Fisher vector representations under different string
lengths.
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Figure 3.8: Evaluation of fast approximated Fisher vector.
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Figure 3.9: The accuracy of two approximations used in the proposed Fisher vector.



Chapter 4

Extended Inverted Index for Binary
Features

In this chapter, we propose a stand-alone mobile visual search system based on
binary features and the bag-of-visual words framework. The contribution of this
chapter is three-fold: (1) we propose a substring extraction method which extracts
informative bits from the original binary vector and stores them in the inverted index.
These substrings are used to refine visual word-based matching; (2) a modified
version of the local naive Bayes nearest neighbor scoring method is proposed in the
context of image retrieval, which considers the density of binary features in scoring
each feature matching; (3) in order to suppress false positives, we introduce a model
check step after standard geometric verification using constraint on the configuration
of a transformed reference image. The proposed system improves retrieval accuracy
by 11% compared with a conventional method without increasing the database size.
Furthermore, our system with the model check does not lead to false positive results.

4.1 Introduction

With the advances in both stable interest region detectors [27] and robust and
distinctive descriptors [26], local feature-based image or object retrieval has become
a popular research topic. In particular, binary features such as Oriented FAST and
Rotated BRIEF (ORB) [19] have attracted much attention due to their efficiency.
Binary features are one or two orders of magnitude faster than Scale Invariant
Feature Transform (SIFT) [44] or Speeded Up Robust Features (SURF) [47] features in
detection and description, while providing comparable performance [19, 30]. These
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binary features are especially suitable for mobile visual search or augmented reality
on mobile devices[161].

With the increasingly widespread use of mobile devices such as Android phones
or iPhones, mobile visual search (MVS) has become one of the major applications
of image retrieval and recognition technology. While some research focuses on
server-client systems in the context of MVS, the purpose of our research is to achieve
fast and accurate recognition with lower memory requirements on mobile devices;
in this thesis, we call the latter type of MVS "local MVS". Local MVS does not
require any server and it works without a network, realizing faster recognition. Thus,
it is suitable for recognizing medium sized databases: i.e., recognizing catalogs,
paintings in a museum, or cards in a collectible card game. In this chapter, we
assume a real-time local MVS system or application, where images captured by
mobile device’s camera are continuously used as an input of local MVS system. If
the camera captures an object registered in the database, our system is expected to
show information or content related to the object immediately. This use case further
requires local MVS systems to suppress annoying false positives because objects in
the database do not always appear in captured images.

The difficulty for the local MVS lies in indexing of local features because it is
necessary to fit the database into the size of the memory in mobile devices or an
application while maintaining retrieval accuracy. In other words, managing the trade-
off between the memory size of the database and the accuracy of image retrieval
is very important. When indexing binary features, Locality Sensitive Hashing
(LSH) [174] is often used [19, 161]. However it does not satisfy our constraint because
it requires a large amount of memory; original feature vectors and many hash tables
should be stored in LSH [82, 175].

A Bag-of-Visual Words (BoVW) framework [61] is the most widely-used approach
for local feature-based image or object retrieval that achieves fast retrieval with lower
memory requirements. As there is a room for improvement in the accuracy of the
standard BoVW framework, many methods have been proposed to improve this
framework for continuous features such as SIFT [63, 79, 77, 75]. However, there are
not many studies on indexing binary features for the purpose of image retrieval.
In [17, 18], the BoVW framework has been adopted to index recent binary features,
referred to as Bag-of-Binary Words (BoBW). In [176], a variant of the Hamming
embedding method [77] is proposed for binarized features in order to improve the
trade-off between memory requirements and accuracy. However, in this method, the
quantization process is done by treating the first a bits of a binary feature as an integer
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ranging from 0 to 2a
− 1, and therefore even one bit error alters the quantization

result.
In this chapter, in order to achieve a real-time local MVS system, we propose a

variant of the BoBW framework, which adaptively extracts and stores VW-dependent
information of each binary feature to refine VW-based matching. As the scoring
method for matched feature pairs has not been considered in depth and only the
standard tf-idf scoring is used in [176], we also propose the use of a modified version
of the local Naive Bayes Nearest Neighbor (local NBNN) scoring method [177]
for image retrieval, which was originally proposed for image classification. It
provides a theoretical basis for scoring feature matching in voting and the proposed
modification improves performance by using adaptive density estimation without
any additional overhead. Finally, we introduce a geometric verification method in
order to suppress false positives.

In this chapter, we did not consider the Fisher vector approach [116, 120, 170]
or the Vector of Locally Aggregated Descriptors (VLAD) approach [119, 129, 133],
which realizes reasonable retrieval accuracy with very compact image representation.
However geometric verification becomes unavailable in these approaches because
matching pairs of features are not obtained in search process. Although it is possible
to perform feature-level matching after image-level search, which makes these
approach not efficient anymore and hurts their advantages.

4.1.1 Extended Inverted Index

Though the BoVW framework achieves efficient retrieval with lower memory
requirements, degradation of accuracy is caused by quantization. In the BoVW
framework, two features are matched if and only if they are assigned to the same
VW [77]. Therefore, quite different features are sometimes matched in the BoVW
framework. In order to suppress these unreliable feature matches post-filtering
approaches are proposed [77, 82]. In these approaches, after VW-based matching, the
distances between a query feature and the reference features that are assigned to the
same VW are calculated and matches with large distances are filtered out. In order to
perform post-filtering, the inverted index is extended to store additional information
of reference features. As exact distance calculation is undesirable in terms of
computational cost and memory requirement to store raw feature vectors, short
code-based methods are used for this purpose [77, 82]: original feature vectors are
encoded into short codes and the distances between feature vectors are approximated
by the distances between the short codes. In [77], local feature vectors are encoded
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Figure 4.1: The framework of the proposed method.

into binary codes by random projection and thresholding, and resulting binary codes
are stored in the inverted index. In [82], a product quantization (PQ) is used to
encode reference feature vectors into short codes, and the resulting short codes are
also stored in the inverted index.

Although many methods have been proposed to improve the BoVW framework
for continuous features, there are not many studies on indexing binary features for
the purpose of image retrieval. In [17], the BoVW framework has been adapted
to index recent binary features, namely BoBW. In [176], a variant of the Hamming
embedding method is proposed for binarized features, where the first a bits are used
to form 2a VWs by treating a bit string as an integer, and the next b-bit substring
is stored in an inverted index. However, this approach results in non-optimal
performance because directly using binary string as VW is sensitive to bit errors;
if one of the first a bits is flipped, the binary vector is to be assigned to a different
VW from the original one. Furthermore, as the statistics of binary features are not
considered, non-informative bits are sometimes selected as a substring.
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4.2 Proposed Local MVS System

In this section, we propose a local MVS system using post-filtering approach, which
is suitable for binary features.

4.2.1 Motivation

We first show an observation that was the motivation for our approach. We start
with BoBW [17], where VWs are created by clustering full binary vectors, instead of
using the first a bits for robustness. The number of VWs is set to 1024. Figure 4.2
shows the statistics of binary features after VW-based clustering. Figure 4.2 (a) and
(b) represent mean values of the first 16 bits of the ORB feature assigned to randomly
chosen two VWs out of 1024 VWs. Figure 4.2 (c) and (d) represent the correlation
among the first 16 bits of the ORB feature assigned to randomly chosen two VWs
out of 1024 VWs. Figure 4.2 gives us three observation; (1) the mean values of the
binary feature are significantly different from 0.5 at some dimensions, (2) some bits
of the binary features are correlated each other, and (3) the characteristics of these
correlations and mean values are different from one VW to another. In spite of the
first observation above, there are still informative bits after VW-based clustering.
Based on this observation, we propose selecting these informative bits as a substring
and store the substring in an inverted index for post-filtering.

Figure 4.1 shows the framework of the proposed method, which is almost the
same as the BoVW framework or its extensions except for the substring extraction
and the inverted index structure. In the indexing step (offline), binary reference
features are extracted from reference images and quantized into VWs. The substrings
of the reference features are generated and stored in an inverted index to facilitate
an efficient search. In the search step (online), each query feature of a query image
votes on reference images with scores according to the distances between the query
feature substring and reference feature substrings.

4.2.2 Constructing VWs and Substring Dictionary

Before indexing, two training procedures are required in the proposed framework;
the construction of VWs and substring dictionary for substring extraction. For VWs
construction, the k-means algorithm is first performed on training binary features.
Then, the resulting centroid vectors are binarized by thresholding at 0.5 as done in
[17], obtaining binary VWs.
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Algorithm 1 Substring dictionary construction

Input: Training vectors Xw assinged to w-th VW, threshold for correlation th
Output: Substring dictionaryDw with size T

1: C← correlation matrix of Xw

2: A← bit identifiers sorted in ascending order of the distance between the mean
value of the bit from 0.5

3: Dw ← {A1}

4: for i do2D
5: j← Ai

6: if maxk∈Dw |C jk| < th then
7: Dw ←Dw ∪ j
8: if |Dw| = T then
9: break

10: end if
11: end if
12: end for

The other training procedure is the construction of the substring dictionary for
bit selection. While the method proposed in [176] uses the fixed positions of bits for
the substring, we adaptively change the positions for each VW. For this purpose, we
construct substring dictionaryDw, which defines the positions of T useful bits for
the w-th VW. For example, in the case where T = 4 andDw = {4, 25, 70, 87}, the 4th,
25th, 70th, and 87th bit of each binary feature assigned to the w-th VW are selected,
resulting in a 4-bit substring.

The substring dictionary is constructed with the algorithm used in ORB [19],
where informative (mean value is close to 0.5) and non-correlated bits are selected.
To do this, training vectors are first clustered into N sets {Xw}

N
w=1 using VWs, where N

denotes the number of VWs, Algorithm 1 describes the algorithm for the construction
of the substring dictionaryDw for the w-th VW. In this algorithm, bit positions are
first sorted according to their entropy. Then, each bit position is added to the
dictionaryDw if the bit is not correlated with all of the bit positions already inDw.
If the algorithm is finished before T bits are selected, the threshold th is decreased
and Algorithm 1 is conducted again. The resulting dictionary {Dw}

N
w=1 is used in

the following indexing and search step. Storing the dictionary requires N×Tbytes
because one byte can represent one bit position of a 256-bit string.
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4.2.3 Indexing Reference Images

In the indexing step, binary features are extracted from reference images and these
features are stored in the inverted index as follows. First, each reference binary
feature is quantized into VW. Letting w denote the identifier of quantized VW, the
substring is extracted using Dw. Then, the following information is stored in the
w-th list of the inverted index as shown in Figure 4.1: image identifier (2 bytes), the
position (x, y) (2+2 bytes), and the substring (8 bytes). In total, 14 bytes per feature
are required.

4.2.4 Search Step

In the search step, binary features are extracted from a query image. Each query
feature votes scores to reference images by the following procedure. First, the binary
query feature is quantized into VW w. The substring of the binary query feature is
generated in the same manner as in the indexing step usingDw. Then, the distances
between the query substring and reference substrings in the corresponding w-th list
of the inverted index are calculated. Finally, scores are assigned to the K-nearest
neighbor reference features.

4.2.5 Voting Score

It is known that weighting scores according to their distances improves performance.
The most common way of doing this weighting is to use the Gaussian function
exp(−d2/σ2) [79, 91, 77], where d is the Euclidean or Hamming distance between the
query feature and reference feature and σ is an adjustable parameter. However, this
approach has little theoretical basis and is not optimal. In this chapter, we propose
the use of a modified version of the local NBNN (LN) method [177], which has a
theoretical background in the derivation of its score. Although LN was originally
proposed for image classification, we show that this method also works well in image
retrieval. In LN, for each query q, a score of (a) d2

K−d2
k is assigned to the corresponding

image of the k-th nearest neighbor feature, where d2
x represents the distance between

q and its x-th nearest neighbor feature. In this chapter, we modify this original
formulation to (b) (dK/dk)2

−1. This modification has the effect of adaptively changing
the kernel radius in kernel density estimation like local scaling [178], resulting in
more appropriate scoring.
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4.2.6 Geometric Verification

Geometric Verification (GV) or spatial re-ranking is important step to improve the
results obtained by voting function [63, 70]. In this step, transformations between the
query image and the top-R reference images in the list of voting results are estimated,
eliminating matching pairs that are not consistent with the estimated transformation.
In the estimation, the RANdom SAmple Consensus (RANSAC) algorithm or its
variants [93, 94] are used. Then, the score is updated counting only inlier pairs.
As a transformation model, an affine or homography matrix is usually used. In
our case, we estimate the homography matrix using PROgressive SAmpling and
Consensus (PROSAC) algorithm [94] for efficiency. As matching pairs between the
query image and the top-R reference images are already obtained in the voting step,
these matching pairs are used as an input to RANSAC. In many studies, GV is used
only for re-ranking [63, 70] to improve retrieval accuracy. In our case, the purpose
of GV is to suppress false positives by thresholding the number of inliers. For this
purpose, standard GV is not sufficient; there is an adequate number of inliers for
non-relevant image pairs as will be shown in Section 4.3.3.

In this chapter, after standard GV, we check the estimated model using the
following constraint, where we assume that reference images represent planar object.
Let a, b, c, and d denote the four corners of a reference image in clockwise order.
These points are transformed by estimated homography H: a′ = Ha, b′ = Hb, c′ = Hc,
and d′ = Hd. Here, a′, b′, c′, and d′ represent the corners of the reference image
captured in the query image. Because the angle of each corner of the transformed
reference image is never larger than 180 degrees using correct homography, we can
use the following constraint to verify the homography:

−−→
a′d′ ×

−−→
a′b′ > 0,

−−→
b′a′ ×

−−→
b′c′ > 0,

−−→
c′b′ ×

−−→
c′d′ > 0,

−−→
d′c′ ×

−−→
d′a′ > 0, where × represents the cross product. If one of the

inequalities is not satisfied, the estimated homography is discarded, suppressing
false positives in our framework.

Even after the above check, we empirically found some false positives with
moderate scores. These were caused by the characteristic of the ORB feature;
the multi-scale FAST detector used in ORB tends to detect features at the almost
same position (often at corners) with different scales. These features are frequently
considered as inliers at the same time, increasing scores between unrelated image
pairs.

Figure 4.3 shows real examples of the geometric verification results with the
model check. The left images are query, and the right images are reference images.
Blue and green lines represent tentative matches before RANSAC. Green lines
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Table 4.1: Comparison of the proposed method with conventional methods in terms
of substring extraction.

BoBW [17] [176] PROP
book 0.610 0.874 0.916
cards 0.173 0.463 0.535

cd 0.427 0.752 0.807
dvd 0.465 0.811 0.897

landmarks 0.080 0.197 0.253
paintings 0.486 0.671 0.718

text 0.125 0.423 0.542
video 0.584 0.824 0.853

average 0.369 0.627 0.690

represent (false) inliers after RANSAC. Red tetragon represents a reference image
transformed by estimated homography. We can see that there are false inliers with
almost the same positions. It is also found that false inliers can be clustered into four
groups, the minimum number of matches required for RANSAC. In order to reduce
this phenomenon, we discard the inliers if are inliers have positions of both reference
and query features closer than five pixels, reducing the scores of non-informative
matches.

4.3 Experimental Evaluation

In the experiments, the Stanford Mobile Visual Search (SMVS) dataset1 is used. It
contains eight classes of images: camera-phone images of books, business cards,
CDs, DVDs, outdoor landmarks, museum paintings, text documents, and video clips.
Each class consists of 100 reference images and 400 query images. As an indicator of
retrieval performance, mean average precision (MAP; higher is better) [77] is used.
We adopt the ORB feature [19] implemented in the OpenCV library2, where at most
900 features are extracted from four scales on average. The number of VWs is fixed at
1024 in all methods and experiments. The VWs and substring dictionary are trained
using the MIR Flickr collection3.

1https://sites.google.com/site/chenmodavid/mobile-visual-search
2http://opencv.org/
3http://press.liacs.nl/mirflickr/

https://sites.google.com/site/chenmodavid/mobile-visual-search
http://opencv.org/
http://press.liacs.nl/mirflickr/
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4.3.1 Effect of Substring Generation

First, the effectiveness of the proposed substring generation method is evaluated.
Table 4.1 summarizes the experimental results. The MAP scores of eight classes are
shown for three methods: (1) BoBW [17], (2) Zhou’s method [176], where we used
the first 10 bits to define 1024 (= 210) VWs and used the next 64 bits as the substring,
and (3) the proposed method with 64 bits substring (T = 64). For a fair evaluation,
conventional tf-idf scoring [44, 179] is used for all methods. Comparing BoBW
with Zhou’s method, we can see that the use of the substring improves accuracy
dramatically. However, the proposed method can further improve accuracy by
adaptively generating the substring.

Next, the effect of the number of selected bits and the selection of methods are
evaluated. Here, in addition to the proposed method, we evaluate two selection
methods: Fixed and Random. Fixed is a modified version of the proposed method,
where a substring is created using the first fixed T bits in all visual words. Random
uses T bits randomly selected for each visual word. These three selection methods
become identical when T = 256, where full binary strings of ORB features are always
used. Figure 4.4 shows the average MAP scores of eight classes as a function of the
length of substrings T, comparing these three selection methods. We can see that the
proposed method achieves the best scores among these variants for all T. Fixed is
slightly better than Random. This is reasonable because, in the ORB algorithm, binary
tests are sorted according to their entropies; the leading bits are more informative.
The interesting observation is that the proposed method at T = 128 outperforms the
proposed method at T = 256, while longer bit string achieves a better result using the
Fixed and Random methods. This implies that using non-informative or correlated
bits degrades search accuracy.

4.3.2 Comparison in Scoring Function

Second, we evaluate the proposed scoring method. The proposed substring method
(T = 64) with Gaussian weighting (GW) 4 is used as a conventional method. From
Table 4.2, it is shown that, while the original LN scoring method (LN(a)) is inferior
to GW, the proposed LN scoring method (LN(b)) outperforms GW by 1.5% and the
method in [176] by 11% in MAP. This is because scores of original LN are directly
affected by the density of feature vectors; the score of a query feature in dense space

4 For the Gaussian weighting, we set σ = 9, which achieved the best performance in our preliminary
experiments, while σ = 16 in [91].
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Table 4.2: Comparison of the proposed method with conventional methods in terms
of scoring.

PROP+GW PROP+LN(a) PROP+LN(b)
book 0.943 0.927 0.955
cards 0.602 0.515 0.609

cd 0.849 0.830 0.873
dvd 0.930 0.924 0.944

landmarks 0.278 0.282 0.289
paintings 0.740 0.758 0.773

text 0.568 0.501 0.570
video 0.900 0.909 0.914

average 0.726 0.706 0.741

Table 4.3: Accuracy of top-1 candidate with and without the model check on eight
classes.

GV GV+MC
book 0.918 0.918
cards 0.570 0.570

cd 0.838 0.838
dvd 0.930 0.930

landmarks 0.114 0.114
paintings 0.709 0.709

text 0.545 0.545
video 0.868 0.868

average 0.686 0.686

tends be low while the score of a query feature in sparse space tends to be high.
The proposed scoring method normalizes the score using the distance between the
query feature and its K-th nearest neighbor feature in the database. Thus, all query
features can equally contribute to the similarity score, improving the final result.
As the overhead of the proposed method is negligible, the proposed system can
improve retrieval accuracy with the same memory requirements and almost the
same computational cost as conventional methods.

4.3.3 Results with Geometric Verification

The accuracy of the proposed framework with geometric verification is evaluated.
In this chapter, we perform geometric verification against the top-3 results of LN(b).
Firstly, we evaluate the effectiveness of the model check method described in
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Section 4.2.6 against false positive suppression. For this purpose, we conducted an
experiment where cd class is used as the reference, and 10,000 images distinct from
the cd class are used as as queries. In this case, ideally, the scores of all results should
be zero. Figure 4.5 shows the distributions of the top-1 score obtained by standard
geometric verification (GV) and with the model check described in Section 4.2.6
(GV+MC). We can see standard geometric verification returns relatively high scores
despite the fact that there is no relevant image in the database for any of the queries.
In contrast, the geometric verification with the model check can suppress most of
the false positives. In particular, there is no result with a score larger than eight.
Therefore, if we use a threshold larger than eight, we can achieve a system with no
false positives.

Table 4.3 shows the top-1 accuracy of GV and GV+MC. Compared with LN(b) in
Table 4.2, Accuracy declines because geometric verification sometimes discards true
positives without a large number of inliers. However, the model check does not cause
further degradation of the accuracy. The degradation of accuracy caused by GV is
prominent in the landmarks and painting classes. The landmark class includes many
non-planar objects, and GV based on homography sometimes fails. The painting
class includes less textured images, lacking in enough inliers in RANSAC.

4.3.4 Computational Cost and Memory Requirements

Table 4.4 shows processing times for feature extraction (Feature), quantization
(Quantize), Hamming distance calculation and voting (Hamming), geometric verifica-
tion (GV). These durations are measured on a standard PC with a Core i7 2600 CPU
3.4GHz and 32 GB of main memory (PC), and on an IS11S smartphone (released in
2011) with Qualcomm Snapdragon S2 MSM8655 1 GHz (SP). Extracting substrings
is quite simple and thus fast, its computational cost is negligible. The times required
for Feature and GV take significantly longer on the smartphone, while those for
Quantize and Hamming do not. This is because, in our implementation, Quantize
and Hamming processes can be sped up using the ARM NEON SIMD operation
on the smartphone. We can see that recognition rates are about 14 fps on the PC
and about 2 fps on the smartphone, achieving a real-time local MVS with no false
positives. Comparing our method and Zhou’s method [176], Zhou’s method is a
little faster because Zhou’s method does not require the quantization process in
Table 4.4. However, the above acceleration results in non-optimal performance in
terms of search precision as discussed in Section 4.1.1 and shown in Table 4.1.
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Table 4.4: Processing times [sec] of the proposed MVS system.

Feature Quantize Hamming GV Total
PC 0.009 0.015 0.013 0.035 0.072
SP 0.184 0.076 0.053 0.211 0.524

In terms of memory requirements, we assume that 100 images are indexed, 900
features are extracted per image, the number of VWs is 1024, and the length of
substring is 64. Under this settings, 100×900×14 bytes = 1.26 Mbytes is required to
store features in inverted index, 1024×32 bytes ≃ 0.03 Mbytes for VWs, and 1024×64
bytes ≃ 0.07 Mbytes for the substring dictionary. This amount of data can reasonably
be included in application binary files such as .apk for Android or .ipa for iPhone.
Comparing our method and Zhou’s method [176], Zhou’s method does not need to
store VWs (0.03MB) and the substring dictionary (0.07MB). This memory footprint is
relatively small compared with that of the inverted index and it does not increase
even if the number of images is increased.

4.3.5 Toward Large-scale Image Retrieval System

While our system focuses on the local mobile visual search applications, we’ll show
that our system can be applicable to large-scale image retrieval applications. For this
purpose, we extend our basic system proposed in this Chapter using the following
approaches:

• Large vocabulary: we here use a relatively large vocabulary (up to 80K) for
efficiency. If a small size of vocabulary is used, the length of the lists in the
inverted index becomes too large for a large-scale dataset, which increases the
processing time for the Hamming distance calculation. On the other hand, a
large vocabulary increases the processing time for quantization. Therefore
we adopt a hierarchical quantization approach [62, 77] with a two-layered
codebook. In the codebook construction, the lower codebook is first created
with the k-means algorithm, and then the upper codebook is created by further
clustering the centroids of the lower codebook. Letting N denote the size of
the lower codebook, we set the size of the upper codebook to

√
N.

• Weak geometric verification: WGC improves the image retrieval accuracy at
the cost of a small increase of memory requirements. We adopt orientation-
based WGC because WGC based on scale is less useful than one based on the
orientation as shown in [102].



76 Extended Inverted Index for Binary Features

• Feature selection: selecting useful features is very important for reducing the
size of the database or improving the search accuracy at the same memory
consumption [180–182]. We adopt our feature selection method [182] that
generates multiview synthetic images and extracts local features, and then
these features are resampled according to a reliability measure.

• Other tunings: we extract the ORB features from 8 scales instead of 4 scales. This
slightly increases the accuracy with a small increase of the extraction time. While
feature matchings for GV are obtained by performing exhaustive matching for
each pair of images for high repeatability in the previous experiments, here we
use the matching pairs obtained in voting for efficiency.

As reference images, we use the book, CD, and DVD classes, which are most
appropriate test objects for our use cases explained in Section 4.1. In addition to the
above reference images, we add one million distractor images from the MIR Flickr
collection in order to confirm the scalability of the proposed system.

Table 4.5 shows the experimental results using this large-scale dataset. Several
different parameter settings are used: the size of the codebook N, the length of the
substring T, and the number of features for a reference image. For query images,
900 features are extracted irrespective of the number of features for the reference
image. For accuracy, average MAP for the three classes is shown. We can see that
the parameters have a large impact on the results.

The size of the codebook. Due to the hierarchical structure of the quantization
and the SIMD optimization, the size of the codebook does not have a large impact
on the processing time for the quantization. On the other hand, using a small size
of codebook (N = 40K) increases the processing time for the Hamming distance
calculation. This is because the length of a inverted index list increases by two
times on average if the size of the codebook is reduced to halve. A larger size of the
codebook degrades the accuracy because the recall of the feature-level matching
declines.

The length of the substring. The longer substring length T drastically improves
the accuracy while increasing the size of the database. It also increases the processing
time for the Hamming distance calculation but not linearly to the length of the
substring.

The number of features per reference image. A larger number of reference
features increases the computational cost for the Hamming distance calculation
linearly and increases the size of database. In this experiment, the number of the
reference features does not have much impact on the accuracy.
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Table 4.5: The results of the large-scale experiments. The MAP score and the
processing times [sec] of each step and total querying time are shown for each
parameter setting.

Parameters N 40K 80K 80K 80K
T 64 64 128 128

#Features 900 900 600 900
Timings Feature 0.015 0.015 0.015 0.015

Quantize 0.007 0.007 0.007 0.007
Hamming 0.161 0.077 0.064 0.092

GV 0.001 0.001 0.001 0.001
Total 0.184 0.100 0.087 0.115

MAP 0.725 0.563 0.835 0.857

Table 4.6: Summary of the impacts of the parameters. The character ’+’ represents
’increase’ of the corresponding parameter or performance measure.

Quatize Hamming MAP
N+ + - - - - -
T+ ++ +++

#Features+ +++ ++

Table 4.6 summarizes the impacts of the parameters. The character ’+’ and ’-’
respectively represent ’increase’ and ’decrease’ of the corresponding parameter or
performance measure.

From the experiments, we adopt the parameter set N = 80K, T = 128, and
#Fetures = 600 for our large-scale retrieval system as a good solution of the trade-off
among accuracy, memory requirements, and processing time. Finally, Figure 4.6
shows MAP and processing time of the system as a function of the number of the
distractor images. We can see that the accuracy declines slowly rather than linearly
as the number of the distractor images increases. The processing time is linearly
increases against the number of the distractors. This is because the processing time
for the Hamming distance calculation becomes dominant in this setting as implied in
Table 4.5. This increase would be alleviated if a larger size of the codebook is used.

4.3.6 Comparison with the other local MVS framework

Finally, we compare our system with the state-of-the-art system in the area of the
local MVS proposed by Hartl et al. [16]. Table 4.7 shows the comparison of our
system and the Hartl’s system. For MAP, the average of eight classes is shown.
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Table 4.7: The comparison of our system and the Hartl’s system.

Ours [16]
Image resolution 640 320

Local feature ORB PCA-SURF
# of features 900 256

Processor SnapDragon 600 1.51 GHz Cortex-A9 1.4 GHz
Processing time [ms] 361 376

Feature extraction 243 216
Quantization (18K/2 layers) 65 (1M/6 layers) 26

Matching 44 -
Geometric verification 9 134

Memory [MB] 17.8 21.6
Recognition rate 0.811 0.700

While the accuracy is calculated for each class of the SMVS dataset in the previous
experiments, the images of all classes are used as reference images in this experiment
and recognition rate is used as a performance measure (top-1 accuracy) as done in
[16]. For the Hartl’s system, the values are taken from [16]. While there are many
differences between our system and the Hartl’s system, the biggest difference is
that our system utilizes the binary feature, ORB, and the Hartl’s system uses the
non-binary feature, SURF. Because non-binary features are one order of magnitude
slower than binary features, systems based on non-binary features requires tunings.
The Hartl’s system restricts the maximum height or width of images to 320 pixels
and the maximum number of local features to 256. Although this reduces the
processing time for feature extraction, it degrades the final accuracy at the same
time. The processing time for quantization on the Hartl’s system is shorter than that
of ours because the Hartl’s system uses the vocabulary tree [62]. We think that the
vocabulary tree is not suitable for a local MVS system (or a small-scale database)
because it requires a large memory, 11.1 MB for the Hartl’s system. The Hartl’s
system also stores local features independent of the inverted index for geometric
verification, which increases the processing time for geometric verification and
memory requirements. From Table 4.7, we can see that our system significantly
outperforms the Hartl’s system in terms of MAP. We think that this comes from the
tunings done in order to speed up extracting the SURF feature as mentioned before.
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4.4 Summary

In this chapter, we proposed a stand-alone mobile visual search system based on
binary features. In our system, a VW-dependent substring extraction method and a
new scoring method are used. It is shown that the proposed system can improve
retrieval accuracy with the same memory requirement as conventional methods.
Geometric verification using a constraint on the configuration of a transformed
reference image achieved no false positive results. Furthermore, we demonstrated
the scalability of our system using up to one million database images. Finally, we
compared our system with one of the state-of-the-art systems in details and showed
the
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Figure 4.2: (a), (b): mean values of first 16 bits of ORB feature assigned to randomly
chosen two VWs. (c), (d): correlation among first 16 bits of ORB feature assigned to
randomly chosen two VWs.
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(a) 14 matches.

(b) 13 matches.

(c) 11 matches.

Figure 4.3: Geometric verification results with the model check. The left images are
query, and the right images are reference images. Blue and green lines represent
tentative matches before RANSAC. Green lines represent (false) inliers after RANSAC.
Red tetragon represents a reference image transformed by estimated homography.
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Figure 4.4: Average MAP scores of eight classes as a function of the length of
substrings T.
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Figure 4.5: Distribution of the top-1 scores of 10,000 non-relevant queries with and
without the model check.
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images.





Chapter 5

Linking Fisher Kernel to Inverted
Index-based Systems

In this chapter, we propose to integrate the advantages of the approaches proposed
in Chapter 3 and Chapter 4. Although the Fisher vector approach proposed in
Chapter 3 provides good similarity measurement to binary features, the resulting
Fisher vector representation does not satisfy our requirements because geometric
verification becomes unavailable in this approach; the matching pairs of features are
not obtained in search process. While the extended inverted index approach proposed
in Chapter 4 can realize a practical MVS system, there is room for improvement
in the distance calculations involved in the quantization and voting. Starting with
general match kernel, we show that the Fisher kernel-based similarity measurement
can be implemented using the extended inverted index structure.

5.1 Proposed Approach

In this section, we introduce Fisher match kernel for binary features, deriving two
different search methods. We start with general match kernel. Let us consider two
sets X andY such that |X| = n and |Y| = m. Each set consists of a set of vectors, such
as local descriptors associated with an image. We first consider match kernels, in a
framework derived in the literature [183], that have the form:

K(X,Y) =
∑
x∈X

∑
y∈Y

k(x, y). (5.1)
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Selecting appropriate kernel is very important for final results. Many methods
which involves matching of binary features use Hamming distances to measure
dissimilarities between two binary features [77, 19, 92]. These methods do not
consider distributions of binary feature vectors, and implicitly assume that each
bit is independently generated and its mean value is 0.5. However, as shown in
experimental results, these assumptions do not hold for binary features. In this
section, we adopt Fisher kernel which can consider underlying distributions of
binary feature vectors. It is natural to use Fisher kernel with the success of Fisher
vectors in image classification [114, 116] or image retrieval [118]. In the following,
we first model binary feature vectors with Bernoulli mixture model (BMM). Then,
it will be shown that the Fisher kernel of BMM can be considered a variant of the
BoVW framework.

5.1.1 Bernoulli Mixture Model

In modeling binary features, it is straightforward to adopt a single multivariate
Bernoulli distribution. However, although many binary descriptors are designed
so that bits of resulting binary features are uncorrelated [19], there are still strong
dependencies among bits. Therefore, a single multivariate Bernoulli component will
be inadequate to cope with the kind of complex bit dependencies that often underlie
binary features. This drawback is overcome when several Bernoulli components
are adequately mixed. In this chapter, we propose to model binary features with
a multivariate Bernoulli mixture (BMM). The use of the BMM instead of a single
multivariate Bernoulli distribution will be justified in the experimental section.

Let x ∈ {0, 1}D denote a D-dimensional binary feature and λ = {wi, µid, i = 1..N, d =
1..D} denote a set of parameters for a multivariate Bernoulli mixture model with N
components, and xd represents the d-th bit of x.

p(x) =
N∑

i=1

wipi(x),

pi(x) =
D∏

d=1

µxd
id (1 − µid)1−xd . (5.2)

In order to estimate the values of the parameter set λ, given a set of training
binary features x1, · · · , xs, · · · , xS, the expectation-maximization (EM) algorithm is
applied [173]. In the expectation step, the occupancy probability γs(i) (or posterior
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probability p(i|xs, λ)) of xs being generated by the i-th component of BMM is calculated
as

p(i|xs) =
wipi(xs|λ)∑N

j=1 w jp j(xs|λ)
. (5.3)

In the maximization step, the parameters are updated as

Si =

S∑
s=1

p(i|xs), wi = Si/S, µid =
1
Si

S∑
s=1

p(i|xs)xsd. (5.4)

5.1.2 Fisher Kernel of the BMM

In this section, we derive the Fisher kernel of the BMM. The Fisher kernel between
two binary features x and y is defined as:

k(x, y) = GxF−1
λ Gy, (5.5)

where Gx and Gy are the Fisher scores and Fλ is the Fisher information matrix. These
terms are calculated in a similar way as done in Chapter 3. The difference from
Chapter 3 is that we consider the Fisher kernel between only two feature vectors
while the two sets of feature vectors are used in Chapter 3. Using similar derivation,
we obtain:

Gx
µid
=
∂L(x|λ)
∂µid

=
1

pi(x|λ)
∂pi(x|λ)
∂µid

(5.6)

= p(i|x)
(−1)1−xd

µxd
id (1 − µid)1−xd

, (5.7)

and

Fµid = wi


∑N

j=1 w jµ jd

µ2
id

+

∑N
j=1 w j(1 − µ jd)

(1 − µid)2

 , (5.8)

where Gx
µid

and Fµid denote diagonal elements of Gx and Fλ w.r.t. the parameter µid.
Substituting Gx

µid
for Eq. (5.5), we get:

k(x, y) =
N∑

i=1

(
p(i|x)p(i|y)αi(x)⊤F−1

i αi(y)
)
, (5.9)
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where αi(x) is a vector whose d-th component is:

αid(x) =
(−1)1−xd

µxd
id (1 − µid)1−xd

, (5.10)

and Fi is a diagonal matrix whose (d, d) component is Fµid . As p(i|x) is very peaky, we
can use the following approximation:

p(i|x) =

1 arg max j p( j|x) = i

0 otherwise.
(5.11)

Using this approximation, k(x, y) in Eq. (5.9) becomes 0 if arg maxi p(i|x) , arg maxi p(i|y).
If arg maxi p(i|x) = arg maxi p(i|y) = î, k(x, y) has non-zero value:

k(x, y) =


αî(x)⊤F−1

î
αî(y) î = arg max j p( j|x)

= arg max j p( j|y)

0 otherwise.

(5.12)

We derive two proposed methods from this kernel, namely BMM-VW and BMM-FK.

5.1.3 BMM-VW

In Eq. (5.12), similarity between x and y becomes 0 if arg maxi p(i|x) , arg maxi p(i|y)
as discussed above. This is very similar behavior to the BoVW framework, where
x and y does not contribute to similarity if they are quantized into different VWs.
Namely, we can regard multivariate Bernoulli components as VWs, and consider
the calculation of arg maxi p(i|y) as quantization process. Thus, we propose the
BMM-VW framework, where the following kernel function is used in Eq. (5.1):

k(x, y) =

1 arg maxi p(i|x) = arg maxi p(i|y)

0 otherwise.
(5.13)

In this formulation, two feature vectors x and y themselves are not required to calcu-
late the kernel value; only arg maxi p(i|x) and arg maxi p(i|y) are required. Therefore,
we can use the inverted index data structure for efficient similarity search.
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5.1.4 BMM-FK

In this section, we introduce selectivity to the kernel in Eq. (5.12). In this kernel, x and
y are considered to be matched if arg maxi p(i|x) = arg maxi p(i|y), which correnponds
to the situation that x and y are quantized into the same VW in the context of the
BoVW framework. In [64, 77], it is shown that this matching cause many false
positives. In order to suppress these false positives, it is proposed that matched
pairs are further filtered out according to the distance or similarity between two
feature vectors [64, 77, 83, 110, 184]. For example, in the Hamming embedding [77]
framework, a matched pair x and y is filtered out if their Hamming distance is larger
than a threshold. The selective Fisher kernel is defined as:

k(x, y) =


ρ
(
αî(x)⊤F−1

î
αî(y)

)
î = arg max j p( j|x)

= arg max j p( j|y)

0 otherwise.

(5.14)

The selectivity function ρ is, for example, defined as:

ρ(u) =

u u ≥ τ

0 otherwise.
(5.15)

This function discards the matched pairs according to similarity (kernel value) of the
matched pair. However, it is shown that absolute value of distance or similarity is
not appropriate for thresholding [83, 185]. Therefore, it is proposed to match each
query feature with only the top-k features in the database. In this chapter, we also
adopt this strategy in selectivity.

In indexing, we can adopt the same extended inverted index data structure
proposed in Chapter 4 (Figure 4.1). The differences from the framework in Chapter 4
is the quantization step and the voting step. In quantization, BMM-FK utilizes the
components of BMM as codebook. In voting, the kernel value defined in Eq. (5.12) is
used as a score, which is voted to the top-k features.

5.1.5 Fast Posterior Calculation with Randomized BMM Trees

The most time consuming part in both BMM-VW and BMM-FK is the calculation
of posterior p(i|x) = wipi(x)∑N

j=1 w jp j(x)
. More precisely, given a set of parameters of BMM

λ = {wi, µid, i = 1..N, d = 1..D} and a feature vector x, the identifier of BMM component
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with the largest posterior î = arg maxi p(i|x) should be obtained in Eq. (5.13) or
Eq. (5.14).

Similarly, in the BoVW framework, it is required to find the nearest neighbor VW
from x in quantization. This is exactly a Nearest Neighbor Search (NNS) problem
in Euclidean distance [74, 186–188, 82], and therefore algorithms for NNS can be
used. In practice, approximate NNS algorithms are frequently adopted for efficiency.
In [62], a hierarchical tree structure called a vocabulary tree is used for efficient
quantization. In [63], randomized kd-trees are adopted, which is shown in [188, 189]
to outperform the other approximate NNS methods such as Locality Sensitive
Hashing (LSH) or hierarchical k-means tree.

Backing to our case, the above NNS algorithms are not applicable because (1)
the input x is a binary vector, and data to be searched is BMM components; (2) the
distance between x and a BMM component is defined by (log-)likelihood. Therefore,
we propose to use the forest of Geometric Near-neighbor Access Trees (GNATs) [190],
which hierarchically decomposes the search space by randomly selected data points
and works for any metric distance. In [191, 175], similar NNS algorithms for
binary features are proposed, which perform priority search of multiple hierarchical
clustering trees. Although we also use multiple trees (forest) and priority search, the
algorithm is different because the input x is a binary feature, and data to be searched
is also binary features in [191, 175].

Algorithm 2 Constructing a randomized BMM tree

Input: BMM components B
Output: randomized BMM tree

1: if |B| < SL then
2: create leaf node with Bernoulli components B
3: else
4: P1, · · · ,PK ← select K Bernoulli components at random from B
5: C1, · · · ,CK ← cluster Bernoulli components in B around Bernoulli components

minimizing KL divergence
6: for each cluster Ci ∈ C do
7: create non-leaf node with Pi recursively apply the algorithm to Ci

8: end for
9: end if
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Constructing Randomized BMM Trees

Algorithm 2 shows the algorithm to construct a randomizedl BMM tree. It starts
with all input BMM components and they are divided into K clusters, where K is
a parameter of the algorithm, called the branching factor. The clusters are formed
by first selecting K BMM components as centroids at random (Line 4), and then
each of the other BMM components is assigned to the nearest BMM component
among the randomly selected K BMM components (Line 5). Randomly selecting
centroids instead of using clustering algorithms [62, 188] ensures independency
among multiple BMM trees. The algorithm is repeated recursively for each of
the resulting clusters until the number of points in each cluster is below a certain
threshold, the maximum leaf size parameter SL. This algorithm is repeated to obtain
T BMM trees.

In the above algorithm, assigning each BMM component to its nearest neighbor is
quite different step from the algorithms in [62, 63, 191, 175, 189] where Euclidean or
Hamming distance can simply be used. In our case, the distance (similarity) between
two Bernoulli components should be calculated. The most straightforward way
to do this is to use the Kullback-Leibler (KL) divergence. For discrete probability
distributions f and g, the KL divergence of g from f is defined as

D( f ||g) =
∑

x

f (x) log
f (x)
g(x)
. (5.16)

From this definition, the KL divergence between two univariate Bernoulli distributions
f (x) = µx

1(1 − µ1)1−x and g(x) = µx
2(1 − µ2)1−x is obtained as

D( f ||g) = µ1 log
µ1

µ2
+ (1 − µ1) log

(1 − µ1)
(1 − µ2)

. (5.17)

Because the KL divergence is additive for independent distributions, the KL diver-
gence between two multivariate Bernoulli distributions pi(x) and p j(x) is obtained
as

D(pi||p j) =
D∑

d=1

(
µid log

µid

µ jd
+ (1 − µid) log

(1 − µid)
(1 − µ jd)

)
. (5.18)

In this thesis, D(pi||p j) is used in clustering BMM components.

Figure 5.1 illustrates the data structure of a randomized BMM tree. The root node
only has the pointers to its child nodes. The inner node has a BMM component with
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Root node

Inner node

Leaf node

BMM component

BMM component

Figure 5.1: Structure of a randomized BMM tree.

parameters {µid}
D
d=1 and the pointers to its child nodes. The leaf node has a BMM

component and the pointers to the BMM components.

Searching in Randomized BMM Trees

Algorithm 3 shows the algorithm to search randomized BMM trees. In this algorithm,
multiple randomized BMM trees are searched simultaneously using a single priority
queue. It starts with recursively traversing each of trees in a depth-first manner (Line
4-7). While this traversals, each of the unexplored nodes is added to the priority
queue PQ according to log-likelihood log pi(x), where i denotes the identifier of the
BMM component assigned to the node (Line 21). When the traversal reaches the leaf
node, log pi(x) is calculated against all BMM components assigned to the leaf node.
After all the trees have been searched once, the search is continued by picking up the
top node from the priority queue PQ and performing the tree traversal starting from
the node. The search stops when the predefined number L of BMM components are
searched.
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Algorithm 3 Searching randomized BMM trees

Input: randomized BMM treesF Ti, query binary feature x
Output: A BMM components with largest posterior probability

1: L← 0 ▷ number of points searched
2: PQ← ∅ ▷ priority queue for unexplored nodes
3: R← ∅ ▷ priority queue for temporal results
4: for each tree Ti do
5: Ni ← the root node of Ti

6: TraverseTree(Ni,PQ,R)
7: end for
8: while PQ , ∅ ∧ L < Lmax do
9: N← top node of PQ

10: TraverseTree(N,PQ,R)
11: end while
12: return top-A BMM components from R
13: procedure TraverseTree(N,PQ,R)
14: if node N is a leaf node then
15: search all BMM components in N and add them to R
16: L← L + |N|
17: else
18: C← childnodesofN
19: Cq ← closestnodeofCto queryx
20: Cp ← C \ Cq

21: add all nodes in Cp to PQ
22: TraverseTree(Cq,PQ,R)
23: end if
24: end procedure
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5.1.6 Fast Posterior Calculation with SIMD Operations

Though the randomized BMM trees do accelerate finding the component with
maximum posterior probability arg max p(i|x), there is room for improvement in
posterior calculation itself, which is required in the traversal of the trees. More
precisely, it is required to calculate log-likelihood log pi(x):

log pi(x) =
D∑

d=1

(
xd logµid + (1 − xd) log(1 − µid)

)
. (5.19)

It is easy to calculate log pi(x); for each bit xd, logµid is added if xd = 1, otherwise
log(1−µid) is added. However, it involves D iterations, and thus is not efficient. One
approach to accelerate this is the use of lookup table. For example, for each byte
of x, all possible values (256 patterns) of corresponding sum of log-likelihood are
pre-computed and stored in lookup table. Once x is given, we can get log-likelihood
by simply looking up the table for each byte. However, this approach requires a
large amount of memory and its performance is not as good as expected. Therefore,
we accelerate this calculation using a trick.

Let logµid denote log(1 − µid). In indexing, we store rd = logµid − logµid

instead of storing both logµid and logµid. In querying time, we first sum up
r = (r1, · · · , rd, · · · , rD) over all d such that xd = 1. This is efficiently done by masking
r∧ x. Then,

∑D
d=1 logµid is added, which can be pre-computed and stored in database.

While this gives us the same result as Eq. (5.19), the above AND and SUM operations
can be accelerated using SIMD operations.

Figure 5.2 illustrates this tricky calculation of log pi(x) in case of D = 4. Firstly,
the vector of r = (r1, · · · , r4) is masked using x, removing rd s.t. xd = 0. Secondly, the
masked r is summed up as r⊤1 = r2 + r3 = logµi2 − logµi2 + logµi3 − logµi3. Finally,∑D

d=1 logµid is added, resulting in logµi1 + logµi2 + logµi3 + logµi4.

In our implementation, we store scalar-quantized rd as follows. In order to avoid
log 0, µid is bounded bounded in the range 0.01 ≤ µid ≤ 0.99 in parameter estimation.
Therefore, assuming that the base of logarithms is 10, the inequality −2 < rd < 2 is
satisfied. Scaled by a factor of 50, rd is stored as 1-byte signed char. Using 128-bit
SIMD operations, 16 variables can be processed simultaneously in the AND and
SUM operations.
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Figure 5.2: A tricky calculation of log pi(x) using SIMD operations.

5.2 Experimental Evaluation

In the experiments, the Stanford mobile visual search dataset1 is used. It contains
eight classes of images: camera-phone images of books, business cards, CDs, DVDs,
outdoor landmarks, museum paintings, text documents, and video clips. Each class
consists of 100 reference images and 400 query images. As an indicator of retrieval
performance, mean average precision (MAP; higher is better) [77] is used. We adopt
the ORB feature [19] implemented in OpenCV library2, where at most 900 features
are extracted from 4 scales on average. The parameters of BMM are trained using
the MIR Flickr collection3.

5.2.1 Evaluation of Searching with Randomized BMM Trees

We first evaluate the search performance with randomized BMM trees proposed in
Section 5.1.5. We learnt the BMM parameters for N = 1, 000 and N = 20, 000 using
training binary vectors extracted from images in the MIR Flickr collection. Then,
300,000 binary vectors distinct from the above training vectors are used as query.
Search precision is defined as the probability that the BMM component with the
largest posterior p(i|x) is found. Of course, linear search always finds it.

Figure 5.3 shows the evaluation results of approximate nearest neighbor search
using randomized BMM trees. Search time per query point as a function of search
precision is shown for 1, 2, 4, 8, 16 trees with Lmax = 32, 64, 128, 256, where Lmax is
the number of points to be searched. The branching factor K and the maximum

1https://sites.google.com/site/chenmodavid/mobile-visual-search
2http://opencv.org/
3http://press.liacs.nl/mirflickr/

https://sites.google.com/site/chenmodavid/mobile-visual-search
http://opencv.org/
http://press.liacs.nl/mirflickr/
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leaf size SL are fixed as K = 32 and SL = 100. The SIMD optimization introduced in
Section 5.1.6 is used here. In case of linear search, we require 4 [ms] for N = 1, 000
and 84 [ms] for N = 20, 000.

We can see that randomized BMM trees do accelerate the calculation of arg maxi p(i|x).
For N = 1, 000, a single tree seems to be sufficient; the overhead of using multiple
trees becomes relatively large for small NNS problem. On the other hand, for
N = 20, 000, using multiple trees is better choice if high precision is required; it
is better to search multiple trees instead of recursively searching a single tree in
large NNS problem. Searching in one tree with L = 256 for N = 1, 000 is 14x faster
than linerar search, achieving the search precision of 93.9%. Searching in two trees
with L = 256 for N = 20, 000 is 132x faster than linerar search, achieving the search
precision of 65.1%.

Figure 5.4 shows search time per query point as a function of search precision for
the different methods in calculating log-likelihood log pi(x). The number of trees is
fixed to 4. SIMD is the SIMD optimized search method introduced in Section 5.1.6.
This is the same as 4trees in Figure 5.3. LUT is the search method using lookup
table. NAIVE is the search method naively calculate log pi(x). It is found that LUT
achieves somewhat disappointing result; there is not so much improvement from
naive implementation. This is because CPU cache does not work effectively; lookup
tables requires a large amount of memory, and these lookup tables are used only once,
resulting in cache miss in CPU. Comparing SIMD and NAIVE, SIMD is about 3x faster
than the naive implementation for N = 1, 000 and 3x to 5x faster for N = 20, 000. The
difference between SIMD and NAIVE becomes larger for larger N, smaller number of
trees, and larger number of L, where the computational cost for the calculation of
log pi(x) is dominant compared with the overhead of the tree traversal.

While the use of lookup tables does not degrades the search precision, the SIMD
operation does because it involves quantization of the parameters as described in
Section 5.1.6. The maximum degradation was 3.1% for 16 trees, N = 20, 000, and
L = 256, achieving 3.5x faster search than naive implementation. We think the
degradation of search precision is negligible in compensation for such acceleration.

Table 5.5 compares maximum posterior probabilities arg maxi p(i|x) obtained
by the exact linear search, randomized BMM trees, and randomized BMM trees
with quantization of parameters (SIMD). In Table 5.5 (a), we can see that obtain
accurate maxi p(i|x) is obtained with the randomized BMM trees. The points not at
the line y = x correspond to the cases that wrong arg maxi p(i|x) is obtained with the
randomized BMM trees. In Table 5.5 (b), it is shown that maxi p(i|x) is distorted by
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the randomized BMM trees with quantization. This is an implementation issue. We
quantized rd = logµid − logµid into uchar value using a floor function. The distortion
would be solved if this floor function is replaced by a round-off function.

5.2.2 Evaluation of BMM-VW

We first evaluate the simplest proposed method, BMM-VW. Table 5.1 compares
the accuracy (mean average precision) of BoBW [17] and BMM-VW methods. The
number of VWs in BoBW and the number of mixture components in BMM-VW
is fixed to 20,000. For BoVW, linear search is performed in quantization (Linear).
For BMM-VW, in addition to linear search, tree-based quantization proposed in
Section 5.1.5 is performed, where four trees are used because linear search is not
applicable in real use cases due to its high computational cost. The parameters
of these trees are as follows: the branching factor K = 32, the maximum leaf size
SL = 100, and the maximum number of points to be searched Lmax = 256 and
Lmax = 32. This corresponds to the left end (Lmax = 32) and the right end (Lmax = 256)
of 4 trees in Figure 5.3 (b).

In Table 5.1, we can see that BMM-VW outperforms BoBW on all classes. This is
because BMM can capture complex bit dependencies that underlie binary features
compared with BoBW as shown in Chapter 3. Comparing BMM-VW Linear and BMM-
VW Lmax = 256, there is no large degradation in accuracy if tree-based approximate
quantization is performed, while BMM-VW Lmax = 256 is 102x faster than BMM-VW
Linear. However, comparing BMM-VW Lmax = 256 and BMM-VW Lmax = 32, MAP
declines to the same level as BoBW, where precision of tree-based search declines
from 74.4% (Lmax = 256) to 32.7% (Lmax = 32). The accuracy of tree-based search does
not have to be perfect. This is because two features extracted reference and query
image can be matched if only they are quantized into the same Bernoulli component;
they are not necessarily be quantized into the Bernoulli component with maximum
(log-)likelihood.

5.2.3 Evaluation of BMM-FK

The method BMM-FK proposed in Section 5.1.4 is evaluated. Here, the number of
BMM components is fixed to 1,000. In quantization, the randomized BMM trees
proposed in Section 5.1.5 is adopted for acceleration, where a single tree is used
with the following parameters: the branching factor K = 32, the maximum leaf
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Table 5.1: Comparison of BoBW and BMM-VW on eight classes in terms of mean
average precision.

BoBW BMM-VW BMM-VW BMM-VW
Quantization Linear Linear Tree Tree

type Lmax = 256 Lmax = 32
book 0.689 0.714 0.713 0.696
cards 0.174 0.183 0.183 0.175

cd 0.577 0.611 0.613 0.578
dvd 0.611 0.642 0.636 0.611

landmarks 0.122 0.133 0.127 0.098
paintings 0.576 0.587 0.585 0.581

text 0.205 0.224 0.225 0.219
video 0.690 0.693 0.688 0.659

average 0.455 0.474 0.471 0.452

size SL = 100, and the maximum number of points to be searched Lmax = 256. This
corresponds to the right end (Lmax = 256) of 1 tree in Figure 5.3 (a).

In this section, three types of distance/similarity are compared: Hamming, FK,
and FV ℓ2. Hamming is a standard Hamming distance used in Chapter 4. FK is
the similarity value of the Fisher kernel defined in Eq. (5.12). FV ℓ2 is the distance
between Fisher vectors of binary features. This is derived by the explicit feature
mapping of the Fisher kernel in Eq. (5.12) as:

αi(x)⊤F−1
i αi(y) =

(
F−1/2

i αi(x)
)⊤ (

F−1/2
i αi(y)

)
. (5.20)

Letting vi(x), the Fisher vector representation of x, denote F−1/2
i αi(x), FV ℓ2 between x

and y is defined as
dFVℓ2(x, y) = ||vi(x) − vi(y)||2, (5.21)

where i = arg max j p( j|x) = arg max j p( j|y).
As a scoring fuction, three types of scoring methods are used: Const, LN(b), and

FK. Const is to vote a constant value (e.g. 1.0) as a score. LN(b) is a scorng method
proposed in Section 4.2.5. As this scorig function requires the distances between a
query feature and reference features, it can be combined with only Hamming and FV
ℓ2. FK votes the value of the Fisher kernel in Eq. (5.12) as a score.

Table 5.2 shows the comparison of the combination of distances and scoring
functions. In this experiment, 256-bit binary feature vectors are stored in the inverted
inedx to calculate distance or similarity between a query feature and a reference
feature. We can see that FK achieves the best performance if the constant score is
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used, which indicates that FK is more appropriate similarity measurement than the
Hamming distance and the ℓ2 distance of the Fisher vector. However, if non-constant
scores are used, the combination of FV ℓ2 dissimilarity measurement and the LN(b)
scoring achieved the best performance. This implies that the order of FK similarity
is very usuful, but the values of the similarity are not appropriate to being directly
used as scores.

Bit Selection, Multiple Assignment, and Weak Geometric Consistency

Next, we apply the bit selection method explained in Chapter 4 to these methods in
order to reduce the memory consumption of the inverted index. Table 5.3 compares
the combination of distances and scoring functions, where 64-bit substrings are used
in the calculation of distance or similarity instead of full 256-bit descriptors. It is
found that the degradation of accuracy from full 256-bit descriptors is larger than
the case of the extended inverted index method explained in Chapter 4. This is
because, in BMM-FK, the distribution of binary features is appropriately modeled
and reflected to the scoring function, while the extended inverted index method
does not consider the underlying distribution. Some bits whose mean values are
far from 0.5 become noise to the extended inverted index method. The bit selection
method can remove these bits. Therefore, the bit selection does not degrade the
accuracy of the extended inverted index method or even improve it as shown in
Chapter 4. On the other hand, BMM-FK makes the best of the information of all bits
even if the mean values of bits are far from 0.5. Therefore, the bit selection has larger
impact on BMM-FK .

Table 5.4 shows the comparison of the combination of distances and scoring
functions when the multiple assignment (MA) is adopted in order to improve the
recall of the feature-level matching. As expected, the accuracy is improved in all
methods. While the best performance is achieved by the FK similarity measure
for constant scoring, the combination of the Hamming distance and the LN(b)
scoring achieved the best performance for non-constant scoring. Table 5.5 shows
the omparison of the combination of distances and scoring functions when 64-bit
substrings and MA are used. Similarly to Table 5.4, the best performance is achieved
by the combination of the Hamming distance and the LN(b) scoring.

Table 5.6 shows the comparison of the combination of distances and scoring
functions on 256-bit binary feature vectors when MA and weak geometric consistency
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(WGC)4 are adopted. Compared with Table 5.4 (w/o WGC), the accuracy is improved
for all methods. The combination of the Hamming distance and the the LN(b) scoring
achieves the highest MAP 0.814.

Normalized FV ℓ2

It is known that ℓ2 normalization can boost the performance of the Fisher vector [116]
or the VLAD representation [129]. In Chapter 3, it is also shown that the proposed
Fisher vector of BMM is improved by ℓ2 normalization. Here, we evaluate a
normalized FV ℓ2 distance between x and y that is defined as:

dNFVℓ2(x, y) =
∣∣∣∣∣∣∣∣∣∣ vi(x)
||vi(x)||2

−
vi(y)
||vi(y)||2

∣∣∣∣∣∣∣∣∣∣
2

= 2 −
vi(x)⊤vi(y)
||vi(x)||2||vi(y)||2

. (5.22)

Table 5.7 evaluates the normalized FV ℓ2 (NFV ℓ2) distance, where 256-bit binary
feature vectors are used in the calculation of the distance. For scoring, in addition
to Const and LN(b), gaussian weighting (GW) is also compared. For GW, the
optimized parameter σ = 0.5 is used as shown in Figure 5.6. From Table 5.7,
we can see that the NFV ℓ2 distance with the LN(b) scoring achieves the highest
accuracy compared with the other combinations distance/similarity and scoring
methods. In Table 5.8, we evaluate the NFV ℓ2/LN(b) method combined with MA,
WGC, and feature selection (FS) [182] as done in . We can see that MA and WGC
further improve the accuracy of NFV ℓ2/LN(b). The NFV ℓ2/LN(b) method with MA
and WGC outperforms the Hamming distance-based method in Table 5.6 (0.821
(NFV) vs 0.814(Hamming)). Furthermore, MAP is improved to 0.881 if feature
selection is adopted. This significantly outperforms the system in Chapter 4 (MAP
0.811). Table 5.9 shows the performance evaluation of the normalized FV with 64-bit
substrings. Although the accuracy of the normalized FV with 64-bit declined from
one with 256-bit full string, it is still better than the system in Chapter 4.

4We used WGC only for the verification of orientation consistency because scale consistency is not
effective compared with orientation.



5.3 Summary 101

Table 5.2: Comparison of the combination of distances and scoring functions. 256-bit
binary feature vectors are used in the calculation of distance or similarity.

Distance/Similarity Hamming FV ℓ2 FK
Scoring Const LN(b) Const LN(b) Const FK

book 0.928 0.962 0.929 0.960 0.941 0.949
cards 0.589 0.693 0.603 0.700 0.611 0.659

cd 0.823 0.889 0.826 0.898 0.848 0.868
dvd 0.896 0.962 0.913 0.964 0.925 0.941

landmarks 0.258 0.326 0.265 0.326 0.265 0.298
paintings 0.618 0.780 0.645 0.780 0.660 0.700

text 0.569 0.660 0.582 0.674 0.590 0.628
video 0.815 0.907 0.831 0.909 0.876 0.888

average 0.687 0.772 0.699 0.776 0.715 0.741

Table 5.3: Comparison of the combination of distances and scoring functions. 64-bit
substrings are used in the calculation of distance or similarity.

Distance/Similarity Hamming FV ℓ2 FK
Scoring Const LN(b) Const LN(b) Const FK

book 0.912 0.953 0.926 0.951 0.926 0.945
cards 0.547 0.583 0.551 0.567 0.570 0.609

cd 0.787 0.862 0.808 0.845 0.823 0.843
dvd 0.902 0.950 0.894 0.939 0.910 0.921

landmarks 0.204 0.222 0.196 0.210 0.202 0.215
paintings 0.611 0.738 0.619 0.730 0.639 0.685

text 0.539 0.600 0.540 0.593 0.560 0.570
video 0.825 0.894 0.837 0.885 0.861 0.881

average 0.666 0.725 0.671 0.715 0.686 0.708

5.3 Summary

In this Chapter, starting with general match kernel, it is proposed to integrate the
essence of the Fisher kernel and the BoVW framework. Firstly, similarity between
binary features is defined by the Fisher kernel. Using the assumption that posterior
probability is peaky, the Fisher match kernel is linked with the BoVW framework,
resulting in two proposed method: BMM-VW and BMM-FK. BMM-VW can be
considered as a variant of BoVW, where VWs are defined by the BMM components
instead of representative binary features. BMM-FK is a BoVW-based framework
very similar to one proposed in Chapter 4. The differences are (1) VWs are defined
by BMM, and (2) similarity of binary features is defined by the Fisher kernel. In
this chapter, the method called randomized BMM trees is also proposed, which
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Table 5.4: Comparison of the combination of distances and scoring functions. 256-bit
binary feature vectors are used in the calculation of distance or similarity. Multiple
assignmet is adopted.

Distance/Similarity Hamming FV ℓ2 FK
Scoring Const LN(b) Const LN(b) Const FK

book 0.947 0.966 0.940 0.961 0.957 0.957
cards 0.660 0.740 0.616 0.705 0.677 0.682

cd 0.865 0.908 0.840 0.893 0.870 0.870
dvd 0.948 0.982 0.932 0.971 0.962 0.958

landmarks 0.327 0.380 0.275 0.324 0.291 0.301
paintings 0.643 0.812 0.638 0.796 0.701 0.732

text 0.637 0.708 0.590 0.654 0.658 0.667
video 0.854 0.927 0.836 0.904 0.897 0.912

average 0.735 0.803 0.708 0.776 0.752 0.760

significantly accelerates the calculation of the quantization in BMM-VW and BMM-
FK. Experimental results show that BMM-VW outperforms the BoBW representation.
The evaluation of BMM-FK indicates that FK-based similarity measurement is very
effective in terms of its order. However, it is found that using its value directly as a
voting score is not appropriate. We believe that there is a room for improvement in
exploiting the FK value in voting, and this is left as future work. On the other hand,
the combination of the normalized Fisher vector distance and the modified version
of the local NBNN scoring method in Chapter 4 achieved the best accuracy. By
combining the normalized Fisher vector with multiple assignment, weak geometric
consistency, and feature selection, the proposed normalized Fisher vector approach
significantly outperforms the system proposed in Chapter 4 and the conventional
state-of-the-art system in terms of the image retrieval accuracy.
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Table 5.5: Comparison of the combination of distances and scoring functions. 64-bit
substrings are used in the calculation of distance or similarity. Multiple assignmet is
adopted

Distance/Similarity Hamming FV ℓ2 FK
Scoring Const LN(b) Const LN(b) Const FK

book 0.936 0.952 0.922 0.942 0.938 0.941
cards 0.595 0.631 0.560 0.577 0.581 0.592

cd 0.831 0.874 0.809 0.848 0.838 0.850
dvd 0.942 0.959 0.899 0.941 0.933 0.937

landmarks 0.219 0.249 0.191 0.207 0.209 0.221
paintings 0.665 0.766 0.621 0.721 0.707 0.722

text 0.584 0.629 0.536 0.580 0.564 0.575
video 0.844 0.885 0.823 0.863 0.882 0.887

average 0.702 0.743 0.670 0.710 0.706 0.716

Table 5.6: Comparison of the combination of distances and scoring functions. 256-bit
binary feature vectors are used in the calculation of distance or similarity. Multiple
assignmet and WGC is adopted.

Distance/Similarity Hamming FV ℓ2 FK
Scoring Const LN(b) Const LN(b) Const FK

book 0.958 0.972 0.948 0.968 0.963 0.964
cards 0.724 0.764 0.664 0.729 0.720 0.720

cd 0.892 0.919 0.883 0.909 0.895 0.898
dvd 0.973 0.985 0.970 0.975 0.973 0.971

landmarks 0.332 0.381 0.280 0.322 0.298 0.309
paintings 0.676 0.819 0.676 0.811 0.725 0.763

text 0.710 0.737 0.665 0.706 0.692 0.711
video 0.922 0.938 0.899 0.916 0.923 0.932

average 0.774 0.814 0.748 0.792 0.774 0.784
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Figure 5.3: Search time per query point as a function of search precision for 1, 2, 4, 8,
16 trees with L = 32, 64, 128, 256.



5.3 Summary 105

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

Search precision

S
e

a
rc

h
 t

im
e

/q
u

e
ry

 p
o

in
t 

[m
s
]

 

 

SIMD

LUT

NAIVE

(a) N = 1,000.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

Search precision

S
e

a
rc

h
 t

im
e

/q
u

e
ry

 p
o

in
t 

[m
s
]

 

 

SIMD

LUT

NAIVE

(b) N = 20, 000.

Figure 5.4: Search time per query point as a function of search precision for the
different methods in calculating log-likelihood log pi(x) with L = 32, 64, 128, 256. The
number of trees is fixed to 4.



106 Linking Fisher Kernel to Inverted Index-based Systems

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Randomized trees

E
x
a

c
t

(a) exact linear search (y-axis) vs randomized BMM trees (x-axis)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Randomized trees + quantization

E
x
a

c
t

(b) exact linear search (y-axis) vs randomized BMM trees with quantization (x-axis)

Figure 5.5: A comparison of maximum posterior probabilities arg maxi p(i|x) obtained
by the exact linear search, randomized BMM trees, and randomized BMM trees with
quantization of parameters (SIMD). 900 binary features from an image are plotted
for this evaluation.
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Table 5.7: Evaluation of the normalized FV ℓ2 distance. 256-bit binary feature vectors
are used in the calculation of the distance.

Distance NFV ℓ2
Scoring Const LN(b) GW

book 0.935 0.966 0.964
cards 0.623 0.716 0.703

cd 0.835 0.897 0.898
dvd 0.925 0.968 0.960

landmarks 0.276 0.340 0.342
paintings 0.653 0.774 0.757

text 0.595 0.684 0.631
video 0.857 0.916 0.917

average 0.712 0.782 0.771

Table 5.8: Comparison of the combination of distances and scoring functions. 256-bit
binary feature vectors are used in the calculation of distance or similarity. Multiple
assignmet, WGC, and feature selection are adopted.

Distance/Scoring NFV ℓ2/LN(b)
MA1 MA3 MA5 +WGC +FS

book 0.966 0.966 0.966 0.970 0.984
cards 0.716 0.750 0.752 0.783 0.888

cd 0.897 0.912 0.913 0.920 0.963
dvd 0.968 0.980 0.982 0.984 0.989

landmarks 0.340 0.373 0.388 0.409 0.504
paintings 0.774 0.806 0.808 0.807 0.842

text 0.684 0.720 0.722 0.748 0.884
video 0.916 0.939 0.930 0.950 0.992

average 0.782 0.806 0.808 0.821 0.881
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Table 5.9: Comparison of the combination of distances and scoring functions. 64-bit
binary feature vectors are used in the calculation of distance or similarity. Multiple
assignmet, WGC, and feature selection are adopted.

Distance/Scoring NFV ℓ2/LN(b)
MA1 MA3 MA5 +WGC +FS

book 0.955 0.960 0.961 0.958 0.981
cards 0.621 0.665 0.659 0.691 0.834

cd 0.866 0.879 0.884 0.887 0.954
dvd 0.953 0.966 0.967 0.975 0.982

landmarks 0.264 0.281 0.286 0.276 0.380
paintings 0.726 0.746 0.742 0.767 0.793

text 0.616 0.641 0.654 0.680 0.844
video 0.893 0.902 0.899 0.934 0.990

average 0.737 0.755 0.756 0.771 0.845
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Figure 5.6: MAP averaged over all classes for the normalized FV ℓ2 with gaussian
weighting as a function of the parameter σ. The highest accuracy 0.771 is achieved
at σ = 0.5.



Chapter 6

Applications

In this chapter, I introduce the real applications where a part of this work has been
used as a image retrieval engine. Especially, the method proposed in Chapter 4 is
used as a core engine in the following applications and systems.

6.1 SATCH VIEWER

SATCH VIEWER1 is an AR application provided by KDDI Corp.2, whicn recognizes
various items surrounding us such as posters, catalogs, leaflets, boxes of sweets, and
so on. Once an object in the database is recognized, AR content is downloaded and
shown to the application user. The AR content can easily be customized for each
object, there are many use cases other than showing standard AR content; showing
movies, providing point service or stamp rally service, linking to social networking
services, and so on. Figure 6.1 illustrates the screenshots of the application. In this
application, a server-client system is used because the database of recognizable items
frequently changes.

6.2 Catalog Camera

Catalog camera is a mobile application which had been provided by Nissen Co.,
Ltd3, which can augment clothing catalogs. If you are interested in a dress on
the catalog, you can get more information unavailable from the catalog by just

1http://viewer.satch.jp/
2http://www.kddi.com/corporate/news_release/2013/0117a/index.html
3http://www.nissen-hd.co.jp/ir/pdf/IR_13_01_17_2.pdf

http://viewer.satch.jp/
http://www.kddi.com/corporate/news_release/2013/0117a/index.html
http://www.nissen-hd.co.jp/ir/pdf/IR_13_01_17_2.pdf
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(a) query image. (b) recognition result
with AR content.

Figure 6.1: Screenshots of SATCH VIEWER application.

capturing the catalog with your smartphone. Figure 6.2 shows a screenshot of the
application. The additional information includes user reviews of clothing, special
discount information, direct link to buy clothing, and so on.

This application is first implemented as a server-client system. However, as each
of catalogs consists of only a few hundred pages and its content does not change,
it is replaced by a stand-alone image recognition system, where the database of
catalog pages are included in the application itself. The small-memory-footprint
characteristics of the method proposed in Chapter 4 had enabled this application.

6.3 au PLAY SCREEN

The third application is au PLAY SCREEN campaign by KDDI Corp. In this
campaign, ODOROKI application had been provided, which recognizes posters,
movies, banner advertisements, and TV commercials which are related to au PLAY
SCREEN campaign. Once one of the above content is recognized, a drama story
proceeds according to the recognized content in the smartphone. Figure 6.3 shows a
sample image of this campaign4, where a campaign poster is to be recognized.

4http://www.au.kddi.com/odoroki/

http://www.au.kddi.com/odoroki/
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Clothing catalog

Augmented information:

-Reviews

-Special sale information

-Direct link to buy clothing

Figure 6.2: A screenshot of Catalog Camera application showing AR content related
to the catalog.

In this application, a hybrid system of a server-client system and a stand-alone
system is adopted5. In this hybrid system, a captured image is first recognized by
a stand-alone system. If there is no result obtained in local search, the application
sends the captured image to the recognition server. The advantage of this hybrid
system is load reduction of the recogntion server; if the search is completed inside the
local system, no query is send to the server. This is especially effective against queries
related to TV commercials because these queries tend to occur simultaneously when
the TV commercials come on. In indexing movies, we developed an algorithm to
reduce the number of frames. Firstly, coarsely sampled frames are indexed. Then,
additional frames are gradually added if the frame had not been recognized by the
neighboring frames which are already indexed. This algorithm has reduced the
number of indexed frames by 86.2%.

6.4 Kaimono Camera

Kaimono (meaning shopping) Camera is an application provided by Dentsu Inc.6 This
application recognizes more than one million products which can be found on the
web sites of kakaku.com7 and @cosme8, including book covers, DVD/Blu-ray Discs,

5http://www.gizmodo.jp/2013/08/au_4glte_play_screen.html
6http://kaimonocamera.com/
7http://kakaku.com/
8http://www.cosme.net/

http://www.gizmodo.jp/2013/08/au_4glte_play_screen.html
http://kaimonocamera.com/
http://kakaku.com/
http://www.cosme.net/


112 Applications

Figure 6.3: Sample image of au PLAY SCREEN campaign.

CDs, and bottles of liquor. Using this application, users can easily check or compare
the prices of a product by capturing the product with a smartphone. Figure 6.4
shows screenshots of Kaimono Camera application. The application continuously
captures images and recognizes them. Once a product is found in the database, the
application screen immediately changes to the result screen. In this application, a
server-client system is used to realize large-scale recognition.



6.4 Kaimono Camera 113

(a) recognizing the book. (b) recognition result.

Figure 6.4: Screenshots of Kaimono Camera application.





Chapter 7

Conclusion

With the increasingly wide-spread use of mobile devices such as Android phones
or iPhones, mobile visual search (MVS) has become one of the major applications
of image retrieval and recognition technology. With MVS, we can recognize the
surrounding world with mobile devices using its built-in camera as an input to
image recognition or retrieval systems. Mobile devices can be also good interface
to effectively show the retrieval or recognition results using augmented reality
technology, for instance. Recent Head Mounted Display (HMD) might be also the
good platform for image retrieval researches. Considering these trends, in this thesis,
we developed a practical local MVS system using recent binary features by proposing
the following three approaches.

• Fisher vectors for binary features. We proposed to apply the Fisher vector
representation to binary features to improve the accuracy of binary feature-
based image retrieval. Main contribution of this approach is to model binary
features using the Bernoulli mixture model (BMM) and derive the closed-form
approximation of the Fisher vector of BMM. To the best of my knowledge,
this is the first time to model binary features with BMM and apply the Fisher
vector approach. We showed that, by modeling binary features with BMM,
it became possible to evaluate how informative different binary features are.
Experimental results show that the proposed Fisher vector outperforms the
BoVW method on various types of objects. In addition, we also propose a fast
approximation method to accelerate the computation of the proposed Fisher
vectors by one order of magnitude with comparable performance.

• Extended inverted index for binary features. We proposed a substring ex-
traction method which extracts informative bits from original binary vector
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and stores in the inverted index. These substrings are used to refine visual
word-based matching. This was the first time to bring the idea of the Hamming
embedding method to binary features. The advantage of this approach is its
practicability. The developed system is very simple but effective, achieving
good trade-offs between search precision, memory requirement, and speed. In
addition, a modified version of the local naive Bayes nearest neighbor scoring
method is proposed in the context of image retrieval, which considers the
density of binary features in scoring each feature matching. Finally, in order
to suppress false positives, we introduce a model check step after standard
geometric verification using constraint on the configuration of a transformed
reference image. The suppression of false positives is essential for real use cases.
The proposed system could retrieve the database with one million images in
87 [ms] and its accuracy significantly outperformed that of the state-of-the-art
local MVS system.

• Linking Fisher kernel to inverted index-based systems. We proposed to
integrate the advantages of the above approaches. Starting with general
match kernel, we show that the Fisher kernel-based similarity measurement
can be implemented using the extended inverted index structure. Using the
assumption that posterior probability is peaky, the Fisher kernel is linked
with the BoVW framework, resulting in two proposed method, namely BMM-
VW and BMM-FK. BMM-VW is a variant of BoVW, where VWs are defined
by the BMM components. BMM-FK is the modified version of the second
approach, where more appropriate similarity measurement is used. In order to
ensure real-time applications, the method called randomized BMM trees is also
proposed, which significantly accelerates the calculation of the quantization
in BMM-VW and BMM-FK. In experiments, it was shown that the BMM-FK
significantly outperformed the two previous approaches and the conventional
state-of-the-art system in terms of the image retrieval accuracy.

Furthermore, we have developed real applications, which include a stand-alone
system, a server-client system, and a hybrid system of them. Through these practical
applications, it has been proven that our developed systems have sufficient potential
for practical usages. Thus, in this thesis, we explored the potential of binary features
in the area of image retrieval and established the basis of binary feature-based image
retrieval that can be used to real applications.
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Limitation & Future work

The most important limitation of our system is that we assumed the recognition
targets are planar. In our system, we perform geometric verifications based on
Homography matrix. While this process is very important to suppress false positives,
it makes non-planar objects difficult to be recognized. Solving this problem has
left for future work. One solution for this problem is to remove planar-assumption
and use the Fundamental matrix in geometric verification. However, as the Degree
of Freedom (DoF) of the Fundamental matrix is relatively large, it was difficult to
achieve zero false positive in our preliminary experiments.

Recognition of deformable objects is also a problem. We face this problem in
recognizing deformable product packages, for instance. Though there are several
researches on deformable object recognition, the solutions tend to require high
computational cost, which might not be acceptable for mobile devices.

In the third approach, it is shown that FK-based similarity measurement is very
effective in terms of its order. However, it is found that using its value directly as a
voting score is not appropriate. we believe that there is a room for improvement in
exploiting the FK value in voting, and which is left as future work.
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[129] R. Arandjelović and A. Zisserman, “All about VLAD,” in Proc. of CVPR, 2013.

[130] J. Delhumeau, P. Gosselin, H. Jégou, and P. Pérez, “Revisiting the VLAD image
representation,” in Proc. of MM, 2013, pp. 653–656.

[131] H. Jégou and A. Zisserman, “Triangulation embedding and democratic aggre-
gation for image search,” in Proc. of CVPR, 2014.

[132] D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, R. Vedantham, R. Grzeszczuk,
and B. Girod, “Residual enhanced visual vector as a compact signature for
mobile visual search,” Signal Processing, vol. 93, no. 8, pp. 2316–2327, 2013.

[133] E. Spyromitros-Xioufis, S. Papadopoulos, I. Kompatsiaris, G. Tsoumakas, and
I. Vlahavas, “A comprehensive study over VLAD and product quantization in
large-scale image retrieval,” TMM, vol. 16, no. 6, pp. 1713–1728, 2014.

[134] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Proc. of NIPS, 2012.

[135] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural codes for
image retrieval,” in Proc. of ECCV, 2014, pp. 584–599.

[136] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features
off-the-shelf: An astounding baseline for recognition,” in Proc. of CVPRW, 2014,
pp. 512–519.

[137] A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson, “Visual instance retrieval
with deep convolutional networks,” arXiv:1412.6574, 2014.

[138] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li, “Deep learning
for content-based image retrieval: A comprehensive study,” in Proc. of MM,
2014, pp. 157–166.

[139] J. L. Long, N. Zhang, and T. Darrell, “Do convnets learn correspondence?” in
Proc. of NIPS, 2014, pp. 1601–1609.

[140] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale orderless pooling of
deep convolutional activation features,” in Proc. of ECCV, 2014.

[141] M. Cimpoi, S. Maji, and A. Vedaldi, “Deep filter banks for texture recognition
and segmentation,” in Proc. of CVPR, 2015.

[142] Y. Liu, Y. Guo, and S. W. andMichael S. Lew, “Deepindex for accurate and
efficient image retrieval,” in Proc. of ICMR, 2015, pp. 43–50.

[143] L. Xie, R. Hong, B. Zhang, and Q. Tian, “Image classification and retrieval are
ONE,” in Proc. of ICMR, 2015, pp. 3–10.

[144] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-neighbor based
image classification,” in Proc. of CVPR, 2008, pp. 1–8.



128 Bibliography

[145] J. Y.-H. Ng, F. Yang, and L. S. Davis, “Exploiting local features from deep
networks for image retrieval,” in Proc. of CVPRW, 2015, pp. 53–61.

[146] A. Babenko and V. Lempitsky, “Aggregating deep convolutional features for
image retrieval,” in Proc. of ICCV, 2015, pp. 1269–1277.

[147] M. Paulin, M. Douze, Z. Harchaoui, J. Mairal, F. Perronnin, and C. Schmid,
“Local convolutional features with unsupervised training for image retrieval,”
in Proc. of ICCV, 2015, pp. 91–99.

[148] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, “Convolutional kernel
networks,” in Proc. of NIPS, 2014.

[149] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer,
“Discriminative learning of deep convolutional feature point descriptors,” in
Proc. of ICCV, 2015.

[150] S. Zagoruyko and N. Komodakis, “Learning to compare image patches via
convolutional neural networks,” in Proc. of CVPR, 2015.

[151] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “Matchnet: Unifying
feature and metric learning for patch-based matching,” in Proc. of CVPR, 2015.

[152] Y. Verdie, K. M. Yi, P. Fua, and V. Lepetit, “TILDE: A temporally invariant
learned detector,” in Proc. of CVPR, 2015.

[153] K. M. Yi, Y. Verdie, P. Fua, and V. Lepetit, “Learning to assign orientations to
feature points,” in Proc. of CVPR, 2016.

[154] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “Lift: Learned invariant feature
transform,” arXiv:1603.09114, 2016.

[155] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional
networks using vector quantization,” arXiv:1412.6115, 2014.

[156] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of deep
convolutional neural networks for fast and low power mobile applications,”
in Proc. of ICLR, 2016.

[157] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” arXiv:1603.05279,
2016.

[158] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” in Proc. of
ICLR, 2016.

[159] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie:
Efficient inference engine on compressed deep neural network,” in Proc. of
ISCA, 2016.

[160] P. Alcantarilla, A. Bartoli, and A. Davison, “Kaze features,” in Proc. of ECCV,
2012.



Bibliography 129

[161] X. Yang and K. Cheng, “Ldb: An ultra-fast feature for scalable augmented
reality on mobile devices,” in Proc. of ISMAR, 2012, pp. 49–57.

[162] X. Yang and K.-T. T. Cheng, “Local difference binary for ultrafast and distinctive
feature description,” TPAMI, vol. 36, no. 1, pp. 188–194, 2014.

[163] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from shift-
invariant kernels,” in Proc. of NIPS, 2009.

[164] J. Wang, S. Kumar, and S. Chang, “Semi-supervised hashing for scalable image
retrieval,” in Proc. of CVPR, 2010, pp. 3424–3431.

[165] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean approach to
learning binary codes,” in Proc. of CVPR, 2011, pp. 817–824.

[166] M. Ambai and Y. Yoshida, “Card: Compact and real-time descriptors,” in Proc.
of ICCV, 2011.

[167] Y. Lee, J. Heo, and S. Yoon, “Quadra-embedding: Binary code embedding with
low quantization error,” in Proc. of ACCV, 2012.

[168] G. Irie, Z. Li, X. Wu, and S. Chang, “Locally linear hashing for extracting
non-linear manifolds,” in Proc. of CVPR, 2014.

[169] V. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing for compact
binary codes learning,” in Proc. of CVPR, 2015.

[170] Y. Uchida and S. Sakazawa, “Image retrieval with fisher vectors of binary
features,” in Proc. of ACPR, 2013.

[171] J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system,” in
Proc. of ISMIR, 2002, pp. 107–115.

[172] X. Anguera, A. Garzon, and T. Adamek, “Mask: Robust local features for
audio fingerprinting,” in Proc. of ICME, 2012.

[173] A. Juan and E. Vidal, “Bernoulli mixture models for binary images,” in Proc. of
ICPR, 2004, pp. 367–370.

[174] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions
via hashing,” in Proc. of VLDB, 1999, pp. 518–529.

[175] M. Muja and D. G. Lowe, “Fast matching of binary features,” in Proc. of CRV,
2012.

[176] W. Zhou, Y. Lu, H. Li, and Q. Tian, “Scalar quantization for large scale image
search,” in Proc. of MM, 2012.

[177] S. McCann and D. G. Lowe, “Local naive bayes nearest neighbor for image
classification,” in Proc. of CVPR, 2012.

[178] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” in Proc. of
NIPS, 2004, pp. 1601–1608.



130 Bibliography

[179] T. Roelleke and J. Wang, “Tf-idf uncovered: A study of theories and probabili-
ties,” in Proc. of SIGIR, 2008, pp. 435–442.

[180] P. Turcot and D. G. Lowe, “Better matching with fewer features: The selection
of useful features,” in Proc. of WS-LAVD, 2009.

[181] Z. Wang, Q. Zhao, D. Chu, F. Zhao, and L. J. Guibas, “Select informative
features for recognition,” in Proc. of ICIP, 2011.

[182] K. Matsuzaki, Y. Uchida, S. Sakazawa, and S. Satoh, “Local feature reliability
measure using multiview synthetic images for mobile visual search,” in Proc.
of ACPR, 2015.

[183] L. Bo and C. Sminchisescu, “Efficient match kernels between sets of features
for visual recognition,” in Proc. of NIPS, 2009.

[184] G. Tolias, Y. Avrithis, and H. Jégou, “Image search with selective match kernels:
Aggregation across single and multiple images,” IJCV, vol. 116, no. 3, pp.
247–261, 2016.

[185] Y. Uchida and S. Sakazawa, “Accurate feature matching and scoring for
re-ranking image retrieval,” in Proc. of ICME, 2013.

[186] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An opti-
mal algorithm for approximate nearest neighbor searching in fixed dimensions,”
JACM, vol. 45, no. 6, pp. 891–923, 1998.

[187] A. Andoni, “Near-optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions,” in Proc. of FOCS, 2006, pp. 459–468.

[188] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic
algorithm configuration,” in Proc. of VISAPP, 2009, pp. 331–340.

[189] ——, “Scalable nearest neighbor algorithms for high dimensional data,” TPAMI,
vol. 36, no. 11, pp. 2227–2240, 2014.

[190] S. Brin, “Near neighbor search in large metric spaces,” in Proc. of VLDB, 1995.

[191] T. Trzcinski, V. Lepetit, and P. Fua, “Thick boundaries in binary space and
their influence on nearest-neighbor search,” PRL, vol. 33, no. 16, pp. 2173–2180,
2012.



Publications

Publications related to the thesis

Journal papers

[1] Y. Uchida, S. Sakazawa, and S. Satoh, “Image Retrieval with Fisher Vectors of
Binary Features,” in ITE Trans. on MTA, 2016 (accepted).

International conference

[2] Y. Uchida, S. Sakazawa, and S. Satoh, “Binary Feature-based Image Retrieval
with Effective Indexing and Scoring,” in Proc. of GCCE, 2014. (oral)

[3] Y. Uchida and S. Sakazawa, “Image Retrieval with Fisher Vectors of Binary
Features,” in Proc. of ACPR, 2013. (oral)

Publications non-related to the thesis

Journal papers

[4] S. Kasamwattanarote, Y. Uchida, and S. Satoh, “Query Bootstrapping: A Visual
Mining based Query Expansion," in IEICE Trans. on Information and Systems, Vol.
E99D, No. 2, 2016.

[5] 小林亜令, 松本正明, 内田祐介, 土井渉, 松崎康平, 加藤晴久, “端末とサーバに
よるハイブリッド大規模画像検索システムとその応用,"映情学誌, Vol. 69, No.
1, pp. 11–16, 2015.



132 Publications

[6] Y. Uchida and S. Sakazawa, “Large-Scale Image Retrieval as a Classification
Problem," in IPSJ Trans. on CVA, Vol. 8, No. 4, pp. 1130-1139, 2013.

[7] Y. Uchida, K. Takagi, and S. Sakazawa, “Optimized Codebook Construction and
Assignment for Product Quantization-based Approximate Nearest Neighbor
Search," in IPSJ Trans. on CVA, vol. 4, pp. 108–118, 2012.

[8] 内田祐介,橋本真幸,川田亮一, “BoFを利用した映像検索における索引規模削
減手法,"信学論, Vol. J94D, No. 1, pp. 416–420, 2011.

[9] Y. Uchida, K. Takagi, and R. Kawada, “Quantization-Based Approximate Near-
est Neighbor Search with Optimized Multiple Residual Codebooks," in IEICE
Trans. on Information and Systems, Vol. E94D, No. 7, pp. 1510–1514, 2011.

[10] 内田祐介, 橋本真幸, 米山暁夫, 川田亮一, “輝度重心に基づくバイナリ特徴量
の適応的照合による高速・高精度な同一映像検出,"信学論, Vol. J93D. No. 9,
pp. 1714–1716, 2010.

International conference (refereed)

[11] K. Matsuzaki, Y. Uchida, S. Sakazawa, and S. Satoh, “Geometric Verification
Using Semi-2D Constraints for 3D Object Retrieval," in Proc. of ICPR, 2016.
(accepted)

[12] K. Matsuzaki, Y. Uchida, S. Sakazawa, and S. Satoh, “Local Feature Reliability
Measure Using Multiview Synthetic Images for Mobile Visual Search," in Proc.
of ACPR, 2015.

[13] Y. Uchida and S. Sakazawa, “Accurate Feature Matching and Scoring for Re-
ranking Image Retrieval Results," in Proc. of ICME, 2013.

[14] Y. Nagai, Y. Uchida, E. Myodo, and S. Sakazawa, “A color transformation
method based on color theme that takes constraints on color ratio and spatial
coherence into consideration,” in Proc. of ICIP, 2013.

[15] Y. Uchida, K. Takagi, and S. Sakazawa, “An Alternative to IDF: Effective Scoring
for Accurate Image Retrieval with Non-Parametric Density Ratio Estimation,"
in Proc. of ICPR, 2012.

[16] Y. Uchida, K. Takagi, and S. Sakazawa, “Ratio Voting: A New Voting Strategy
for Large-Scale Image Retrieval," in Proc. of ICME, 2012. (oral)

[17] Y. Uchida, K. Takagi, and S. Sakazawa, “Fast and Accurate Content-Based video
Copy Detection Using Bag-of-Global Visual Features," in Proc. of ICASSP, 2012.

[18] Y. Uchida, M. Agrawal, and S. Sakazawa, “Accurate Content-Based Video Copy
Detection with Efficient Feature Indexing," in Proc. of ICMR, 2011. (oral)



Publications 133

[19] Y. Uchida, M. Hashimoto, and R. Kawada, “Fast and Robust Content-Based
Copy Detection Based on Quadrant of Luminance Centroid and Adaptive
Feature Comparison," in Proc. of ICIP, 2010. (oral)

International conference (non-refereed)

[20] Y. Uchida, K. Takagi, and S. Sakazawa, “KDDI Labs at TRECVID 2011: Content-
Based Copy Detection," in Proc. of TRECVID, 2011.

[21] Y. Uchida, S. Sakazawa, M. Agrawal, and M. Akbacak, “KDDI Labs and SRI
International at TRECVID 2010: Content-Based Copy Detection," in Proc. of
TRECVID, 2010.

Domestic conference (refereed)

[22] 内田祐介, 酒澤茂之, "複数コードブックを用いた直積量子化による近似最近
傍探索手法と特定物体認識への応用," 画像の認識・理解シンポジウム, 2011.
(single oral)

Domestic conference (non-refereed)

[23] 内田祐介,酒澤茂之, "Image Retrieval with Fisher Vectors of Binary Features,"
画像の認識・理解シンポジウム, 2014.

[24] 内田祐介,酒澤茂之, "クラス分類問題としての画像検索,"画像の認識・理解シ
ンポジウム, 2013.

[25] 内田祐介,酒澤茂之, "Local NBNNの画像検索への適用に関する一検討,"映像
情報メディア学会年次大会, 2013.

[26] 内田祐介,酒澤茂之, "バイナリ特徴のためのフィッシャーベクトルに関する一
検討,"電子情報通信学会総合大会, 2013.

[27] 内田祐介,酒澤茂之, "特定物体認識における画像間の幾何検証の高精度化に関
する一検討,"映像情報メディア学会冬季大会, 2012.

[28] 内田祐介,酒澤茂之, "特定物体認識のための最近傍密度比推定に基づくスコア
リング手法,"画像の認識・理解シンポジウム, 2012.

[29] 内田祐介,酒澤茂之, "特定物体認識のための最近傍密度推定に関する一検討,"
映像情報メディア学会年次大会, 2012.



134 Publications

[30] 内田祐介,酒澤茂之, "大域・局所画像特徴および音響特徴を用いた高精度なコ
ピー検出手法,"パターン認識・メディア理解研究会,信学技報, 2011.

[31] 内田祐介, 酒澤茂之, "局所特徴の時間的バースト性を考慮した準同一映像検
出,"電子情報通信学会総合大会, 2011.

[32] 内田祐介, 高木幸一, 酒澤茂之, "近似最近傍探索のための直積量子化コード
ブック作成手法に関する一検討,"映像情報メディア学会年次大会, 2011.

[33] 内田祐介,高木幸一,酒澤茂之, "BoVWを用いた特定物体認識における投票関
数に関する一考察,"情報科学技術フォーラム, 2011.

[34] 内田祐介,橋本真幸,川田亮一, "ショット境界のbi-gram表現による同一映像検
索手法に関する一検討,"電子情報通信学会総合大会, 2010.

[35] 内田祐介, 菅野勝, 橋本真幸, 米山暁夫, "カラーレイアウト記述子を利用した
コピー検出手法の性能評価," パターン認識・メディア理解研究会, 信学技報,
2009.

[36] 内田祐介,橋本真幸,米山暁夫,川田亮一, "画像マッチングとカメラ追跡による
カメラポインタの性能改善,"映像情報メディア学会冬季大会, 2009.

[37] 内田祐介,橋本真幸,米山暁夫, "Iフレームを用いたショット境界検出の高速化
に関する性能評価,"情報科学技術フォーラム, 2009.

[38] 内田祐介,橋本真幸,米山暁夫, "バイナリ特徴量を用いた高速同一映像断片探
索に関する一検討,"映像メディア処理シンポジウム, 2009.

[39] 内田祐介,橋本真幸,米山暁夫, "Iフレームを用いたショット境界検出の高速化
に関する一検討,"映像情報メディア学会年次大会, 2009.

[40] 内田祐介,加藤晴久,上野智史,橋本真幸,米山暁夫, "アフィン不変領域抽出の
ためのSIFT拡張の検討,"電子情報通信学会総合大会, 2009.

[41] 内田祐介,菅野勝,米山暁夫, "カラーレイアウトを利用した違法コピー検出に
おける投票に関する一考察,"映像情報メディア学会冬季大会, 2008.

[42] 内田祐介, 菅野勝, 米山暁夫, "カラーレイアウトに基づく違法コピー検出手
法,"映像メディア処理シンポジウム, 2008.

[43] 内田祐介,加藤晴久,米山暁夫, "前景・背景分離を利用したタイムラプスビデ
オに関する一検討,"映像情報メディア学会年次大会, 2008.

[44] 内田祐介,加藤晴久,宮地悟史,米山暁夫, "動画のエラー伝播特性を考慮した不
均一誤り保護の一検討,"電子情報通信学会総合大会, 2008.



Publications 135

Technical descriptions
[45] Y. Uchida and S. Sakazawa, "Near-Duplicate Image Retrieval as a Classification

Problem," in IEEE COMSOC MMTC E-Letter, vol. 7, no. 7, 2012.

[46] 内田祐介,酒澤茂之, "大規模特定物体認識の最新動向,"信学会誌, Vol. 93, No.
3, pp. 207–213, 2013.

[47] 内田祐介,酒澤茂之, "大規模特定物体認識技術およびその最新研究事例," Vol.
24, No. 12, pp. 61–68, 2013.

Awards
[48] 映像情報メディア学会技術振興賞, 2013.

[49] ACPR 2013 Best Paper Award, 2013.

[50] FITヤングリサーチャー賞, 2011.

[51] 電子情報通信学会学術奨励賞, 2010.




	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background
	1.1.1 From Text-based to Content-based Image Retrieval
	1.1.2 Local Feature-based Image Retrieval
	1.1.3 Advances of Mobile Devices
	1.1.4 Objective

	1.2 Contribution of This Thesis
	1.3 Structure of This Thesis

	2 Related Work
	2.1 Local Features
	2.1.1 Feature Detectors
	2.1.2 Feature Descriptors

	2.2 Image Representations
	2.2.1 Bag-of-Visual Words
	2.2.2 Fisher Kernel and Fisher Vector
	2.2.3 Vector of Locally Aggregated Descriptors

	2.3 Deep Learning for Image Retrieval

	3 Fisher Vector for Binary Features
	3.1 Introduction
	3.2 Fisher Vector for Binary Features
	3.2.1 Bernoulli Mixture Model
	3.2.2 Deriving the Fisher Vector of BMM
	3.2.3 Vector Normalization
	3.2.4 Fast Approximated Fisher Vector

	3.3 Experiment
	3.3.1 Evaluating BMM in terms of Log-likelohood
	3.3.2 Clustreing Effect
	3.3.3 Impact of Normalization
	3.3.4 Performance for Various String Lengths
	3.3.5 Increasing Database Size
	3.3.6 Evaluation of Fast Approximated Fisher Vector

	3.4 Summary

	4 Extended Inverted Index for Binary Features
	4.1 Introduction
	4.1.1 Extended Inverted Index

	4.2 Proposed Local MVS System
	4.2.1 Motivation
	4.2.2 Constructing VWs and Substring Dictionary
	4.2.3 Indexing Reference Images
	4.2.4 Search Step
	4.2.5 Voting Score
	4.2.6 Geometric Verification

	4.3 Experimental Evaluation
	4.3.1 Effect of Substring Generation
	4.3.2 Comparison in Scoring Function
	4.3.3 Results with Geometric Verification
	4.3.4 Computational Cost and Memory Requirements
	4.3.5 Toward Large-scale Image Retrieval System
	4.3.6 Comparison with the other local MVS framework

	4.4 Summary

	5 Linking Fisher Kernel to Inverted Index-based Systems
	5.1 Proposed Approach
	5.1.1 Bernoulli Mixture Model
	5.1.2 Fisher Kernel of the BMM
	5.1.3 BMM-VW
	5.1.4 BMM-FK
	5.1.5 Fast Posterior Calculation with Randomized BMM Trees
	5.1.6 Fast Posterior Calculation with SIMD Operations

	5.2 Experimental Evaluation
	5.2.1 Evaluation of Searching with Randomized BMM Trees
	5.2.2 Evaluation of BMM-VW
	5.2.3 Evaluation of BMM-FK

	5.3 Summary

	6 Applications
	6.1 SATCH VIEWER
	6.2 Catalog Camera
	6.3 au PLAY SCREEN
	6.4 Kaimono Camera

	7 Conclusion
	Bibliography
	Publications

