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ABSTRACT
We describe an accurate content-based copy detection system that
uses both local and global visual features to ensure robustness. Our
system advances state-of-the-art techniques in four key directions.
(1) Multiple-codebook-based product quantization: conventional
product quantization methods encode feature vectors using a sin-
gle codebook, resulting in large quantization error. We propose
a novel codebook generation method for an arbitrary number of
codebooks. (2) Handling of temporal burstiness: for a stationary
scene, once a query feature matches incorrectly, the match contin-
ues in successive frames, resulting in a high false-alarm rate. We
present a temporal-burstiness-aware scoring method that reduces
the impact from similar features, thereby reducing false alarms.
(3) Densely sampled SIFT descriptors: conventional global fea-
tures suffer from a lack of distinctiveness and invariance to non-
photometric transformations. Our densely sampled global SIFT
features are more discriminative and robust against logo or pat-
tern insertions. (4) Bigram- and multiple-assignment-based index-
ing for global features: we extract two SIFT descriptors from each
location, which makes them more distinctive. To improve recall,
we propose multiple assignments on both the query and reference
sides. Performance evaluation on the TRECVID 2009 dataset in-
dicates that both local and global approaches outperform conven-
tional schemes. Furthermore, the integration of these two approaches
achieves a three-fold reduction in the error rate when compared
with the best performance reported in the TRECVID 2009 work-
shop.
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H.3.1 [Information Storage and Retrieval]: Content Analysis
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Keywords
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1. INTRODUCTION
Digital multimedia content, computer, and Internet technologies
have become ubiquitous, with digital videos used extensively in
many applications. Copyright infringement poses a significant is-
sue for one of the applications — online video-sharing services.
Because many upload video clips to these sites without proper copy-
right release, an automated system that detects copies of copy-
righted video is needed.

In such an automated system, content holders register copyrighted
content with the operators of video-sharing sites in advance. The
operators extract features from the copyrighted content and store
them in a database. When a user uploads a video clip, features are
extracted from the uploaded video clip in the same way and the
database is searched for a match. If the database contains matching
content, the uploaded content is considered to be a copy of copy-
righted content and filtered out, or some another action is taken in
compliance with the content holder’s intentions.

Given a test collection of videos and a set of queries, the goal of
content-based copy detection (CBCD) technology is to determine
for each query the place, if any, that some part of the query oc-
curs, with possible transformations, in the test collection. In recent
years, CBCD has attracted considerable research attention. The
TRECVID [1] workshop series encourages research in content-
based retrieval of digital video by providing a large test collection,
uniform scoring procedures, and a forum for organizations inter-
ested in comparing their results.

For an automated CBCD system to be usable, it is important that it
has the following properties:

Robustness to various transformations.The video may have been
subject to severe transformations, including the addition of
patterns, embedding in a different video, deletion of audio
channels, and geometric transformations.

Computationally efficient. The system must be sufficiently effi-
cient so that its application to a large collection of videos
requires only modest computational power.

Low false alarms. A system with too many false detections is an-
noying and requires ongoing operator intervention to filter
out the false alarms.

Our CBCD system has made significant advances in these direc-
tions. For accurate detection, our system is based on two types of
CBCD schemes: one uses local invariant features, and the other



uses dense-sampled global features, thereby achieving robustness
to various transformations. We present two indexing schemes to
index these feature vectors efficiently in an inverted index scheme,
based on a bag-of-features representation. We show that integration
of these two types of features greatly improves results.

Local approach. Our first scheme is based on SIFT like local
invariant features [4], in which a novel version of the product-
quantization-based method [12] is integrated with an inverted index
to perform an accurate nearest neighbor search (NNS). Our novelty
lies in the ability to use an arbitrary number of codebooks to quan-
tize the residual vectors. Doing so enables the product quantizer
to switch codebooks according to feature distributions, thereby in-
creasing NNS accuracy. We also point out a temporal burstiness
problem and present a temporal-burstiness-aware scoring method
that reduces the impact from similar features, thereby reducing
these false alarms.

Global approach. Conventional global features suffer from lack of
distinctiveness and invariance to nonphotometric transformations.
Our second scheme is based on novel densely sampled global SIFT
features, which are more discriminative and robust against logo or
pattern insertions. Two feature descriptors are extracted at each
sampled feature location, resulting in bigram feature representa-
tions. We perform multiple assignments for bigram feature rep-
resentations on both the reference and query sides to improve the
recall. We also present a technique to handle the Picture-In-Picture
(PIP) transformation using global features.

2. RELATED WORK
Any CBCD system has two major components. The first compo-
nent involves generating compact and discriminative signatures for
each reference video that are invariant to various transformations.
The second component is the similarity search algorithm, which
uses the signatures to efficiently search for near-duplicate video
keyframes. To date, many algorithms have been developed for each
of the two components.

2.1 Local-feature-based CBCD
Given the success of local invariant features in the area of image re-
trieval [18, 20, 10], local features have also been adopted to CBCD
systems [26, 5]. In local-feature-based CBCD systems, interest
points [15, 16] are extracted from each video keyframe and sum-
marized by their feature descriptors.

One challenge in local CBCD systems is efficient feature indexing
for similarity search. Because hundreds of millions of local features
are extracted in a large-scale system, feature indexing is critical for
efficiency. To date, many indexing methods have been proposed
such as ANN [3], LSH [2], randomized kd-tree algorithm [20, 21]
and FLANN [17]. For a large-scale system consisting of millions
of video keyframes, the indexing methods mentioned above are not
suitable because they require the feature vectors themselves to be
stored in indices [12]. Therefore, many CBCD schemes are de-
veloped over a bag-of-visual words+ inverted index (BoVW+II)
framework [22]. In BoVW+II, each feature vector is quantized into
a visual word and stored in a inverted index with a time stamp or
other information related to the feature. In addition to the efficiency
that the inverted index structure confers, storage of feature vectors
in the index is not needed. Because a naive BoVW+II approach
suffers from many false matches of local features, embedding meth-
ods [10, 25, 12] are integrated into BoVW+II. Embedding meth-
ods encode feature vectors into more compact signatures (e.g., 32–
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Figure 1: Framework of our CBCD system.

128 bit code) and filter out most false matches according to the
signatures. Although a product-quantization-based method [12]
has been shown to achieve the best performance among the meth-
ods mentioned above, it still suffers from large quantization errors
because it encodes all features with a single codebook and does
not consider the divergence of feature distributions among visual
words.

Another difficulty for local features is the temporal burstiness ef-
fect, in which incorrect query and reference feature pair matches
in successive frames, especially in static regions like background,
cause many false alarms in the final detection results. A few meth-
ods have been proposed to suppress non-consistent feature matches
using spatial information such as weak geometric consistency (WGC)
constraints [10] or scale-rotation invariant pattern entropy (SR-PE)
[26]. However, because these bursty matches usually have the same
spatial information over frames, the matches are always consistent
with each other, and spatial verifications do not help suppress them.

2.2 Global-feature-based CBCD
Global features have been traditionally used in CBCD systems be-
cause of their efficiency and robustness against photometric trans-
formations such as blur, compression, and gamma change. Global
signatures summarize the entire frame into a single descriptor. An
ordinal measure (OM) [9, 24], one of the major global descriptors,
has been shown to be robust to changes in resolution and illumina-
tion. In [19], OM is extended to include temporal information for
more robustness. Recently, gradient-based features [14] have also
been shown to achieve good robustness and pairwise independence.

One difficulty in global feature approaches is a lack of distinctive-
ness. Many schemes adopt low-dimensional global features and
require a sequential search because each global feature is not dis-
tinctive enough [13]. Sequential search is infeasible in a large-scale
system, however, because it requires a lengthy processing time pro-
portional to reference and query size.

3. OVERVIEW OF THE PROPOSED CBCD
SYSTEM

Figure 1 provides an overview of the proposed CBCD system. Each
video is resampled at a fixed frame rate (1 Hz for all our experi-
ments) to extract keyframes. That rate makes our reference database
size tractable and also helps us deal with frame rate changes.

For each keyframe of both reference and query videos, our sys-
tem extracts local and global features. The features from the query
video are used to produce query results independently in the form
of a reference video identifier, a corresponding timestamp offset, a
total score, and frame-level scores. The results of each of the two
types of features are integrated in a postprocessing stage to make
the results reliable and accurate. It is easy to see that additional
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Figure 2: Overview of local-feature-based CBCD.

modalities such as audio-based queries can be easily integrated into
our system.

Local and global feature integrations for CBCD task have been
used because each feature works well for different transformations,
which are in some sense complementary: local features are robust
even against large geometric transformations, whereas global fea-
tures are more robust against nongeometric (photometric) transfor-
mations. In addition, global features are much faster to compute.

The following sections describe each of the two modalities in some
detail, as well as the integration framework and evaluation results.

4. LOCAL-FEATURE-BASED CBCD
Figure 2 illustrates a functional diagram of our local-feature-based
CBCD scheme. We use local scale invariant features and their bag-
of-features representations, which have been used widely in im-
age/video retrieval areas [22, 20, 10, 5]. The key ideas here are (1)
the use of the upright SIFT (USIFT) feature descriptor for distinc-
tiveness, (2) a novel variant of product-quantization-based index-
ing for more accurate NNS and (3) consideration of the temporal
burstiness of local features in scoring to suppress false alarms.

4.1 USIFT extraction
For each keyframe, we detect the SIFT features and use USIFT as
the feature descriptor. USIFT is more distinctive and faster to com-
pute than SIFT [4]. Because most video transformations include a
small rotation, USIFT can be used without degrading the robustness
of the CBCD system. Each key frame is then represented by a set
of features points (bag-of-features). Each feature point contains the
following information: video identifierid (only for reference video
frame), timestampts, position of feature point (x, y), and USIFT
feature vectorf .

4.2 Product-quantization-based indexing
Because each frame has a large number of USIFT feature descrip-
tors, the indexing method must be accurate. We use a novel version
of the product-quantization-based method [12] to index USIFT fea-
ture vectors obtained in the USIFT extraction step. Our approach
increases NNS accuracy at a small increase in memory overhead.

In the product-quantization-based scheme [12], a reference vector
is first quantized by a coarse quantizer with the size ofN (50K in
this paper); the residual vector from the corresponding centroid is
then decomposed intoS (8 in this paper) residual subvectors. Fi-
nally, theS residual subvectors are independently encoded (product
quantization) into a short code using codebooks for product quan-
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Figure 3: Modified product-quantization-based indexing.

tization. This can be integrated with an inverted index, referred to
as IVFADC in [12].

In our CBCD system, we modify the original product-quantization-
based method to use multiple codebooks in product quantization,
whereas a residual subvector is quantized by a single codebook in
the original algorithm. The framework of our product-quantization-
based indexing method is shown in Figure 3. Our scheme allows
us to switch codebooks depending on the cell that the input vector
falls into in the coarse quantization step. The memory requirements
for using a different codebook for each of theN cells becomes pro-
hibitively large. Instead, we use an arbitrary numberM (M≪N) of
codebooks for each of thes-th residual subvectors created by the
following procedure:

1. For eachn = 1, · · · ,N, create a set ofs-th residual subvec-
tor Rs,n from all training vectors assigned to then-th cell
in a coarse quantizer and assignRs,n to a random cluster
m ∈ {1, · · · ,M}.

2. For eachm = 1, · · · ,M, update codebookCs,m by clustering
all s-th residual subvectors assigned to the clusterm.

3. For eachn = 1, · · · ,N, assignRs,n to the clusterm̂, such that
the codebookCs,m̂ achieves minimum error in quantization
of Rs,n. The identifierm̂ is also stored in a tableTs,n.

4. Repeat Step 2 and Step 3 until convergence occurs.

Now, M codebooks can be switched according to the tableT: s-th
residual subvectors that belong ton-th cell in coarse quantization is
to be quantized by the codebook with the identifierTs,n in product
quantization.

In the case ofM = 1, our codebook becomes identical to the code-
book used in [12]. Use of largerM reduces the quantization error
in product quantization and improves NNS accuracy at the cost of
the additional memory requirements. Here, we decompose resid-
ual vectors into 8 residual subvectors, and set the number of code-
books M used in product quantization to 256. The size of each
product quantization codebook is set to 256. In this case (for 128-
dimensional USIFT vectors), only 256×256×128∼8M byte mem-
ory is required to store codebooks, whereas 256×50K×128∼1.6G
byte memory is required ifN codebooks are used. Each feature
is encoded into 8×8=64 bits code, and the code is stored in the
inverted index for distance estimation.

4.3 Index search



In the search step, USIFT features in a query video are efficiently
matched with reference features using an inverted index [22]. In ad-
dition, we can filter out many false matches through distance calcu-
lation between a residual vector of a query feature and a short code
of a reference feature [12]. Here, we filter out reference features
with a distance larger than 0.3 (assuming USIFT features are nor-
malized to a norm of 1.0). The result of the index search step is a set
of matched keypoint pairs (Q,R), where each query keypointQ has
timestamptsq and coordinate (xq, yq), and each reference keypoint
Rhas video identifierid, timestamptsr and coordinate (xr , yr ).

4.4 Offset-level integration
Feature-level results obtained in the index search step are inte-
grated into offset-level results using a voting scheme [13, 5]. Ev-
ery matched keypoint pair (Q,R) votes for the corresponding bin
b[id][ tsr−tsq] in the 2D Hough space. After performing non-maxima
suppression and thresholding, we obtain the top 200 hypothesis
represented by (id,offset), whereoffset=tsr−tsq. Each hypothesis
(id, offset) has a list of matched keypoint pairs that have voted for
the hypothesis, and this information is used for geometric verifica-
tion. We also tried to incorporate the WGC method [10] using only
scale information1, but found that it did not contribute to accuracy
of our experiments probably because WGC based on scale is less
useful than one based on the orientation shown in [23].

4.5 Keypoint tracking
In the tracking step, query keypoints are tracked against keypoints
in one and two previous frames. Then, each query keypointQi has a
list of keypointsQ s.t. 0< tsq− ts′q ≤ 2, (xq− xq′ )2+ (yq−yq′ )2 < r2

and ||fq − fq′ ||2 < th2. Here r is the maximum distance between
two tracked feature points andth is the maximum distance between
their feature vectors. The lists are used in the geometric re-ranking
step to alleviate the temporal burstiness effect.

4.6 Geometric re-ranking and handling tem-
poral burstiness

Geometric verification and re-ranking are performed on the top 200
results (candidates) obtained in the offset-level integration step. For
each result, we estimate the transformation matrix with 4 degrees
of freedom [20] between the query video and the reference video
using random sample consensus (RANSAC) algorithm and obtain
the score according to the number of inliers. Instead of simply
counting the number of inliers, our scoring scheme takes temporal
burstiness into consideration in a manner similar to [11, 6].

Figure 4 shows an example of temporal burstiness phenomenon of
local features. In the bursty case (Figure 4a) an incorrect match
propagates to successive frames. This is different from the non-
bursty case (Figure 4b) where different features match in successive
frames. Eventhough the number of feature matches is the same
in both cases, the bursty case is more likely to be a false match.
Temporal burstiness of local features is seen more frequently than
that of global features [6] because it occurs even in scenes with a
dynamic foreground and static background, which is not the case
of global features. In a naive scoring method, the bursty keypoint
matches between irrelevant videos often get higher scores than true
matches, which results in a high false-alarm rate. To alleviate this
problem, we introduce a new scoring method to reduce the scores
associated with the bursty matches.

1Orientations of matched keypoint pairs are alwaysconsistentin
the USIFT-based scheme.

Reference

Query

t’t’-1t’-2

tt-1t-2

Same keypoints with different timestamps

(a) Bursty case

Reference

Query

t’t’-1t’-2

tt-1t-2

(b) Non-bursty case

Figure 4: An example of the temporal burstiness effect. (a) The same fea-
ture is matched on successive frames, which might occur even between ir-
relevant videos, especially in stationary scenes. (b) Different features are
matched on successive frames, which rarely happens between irrelevant
videos.

For each query pointQi , the number of successive matches asso-
ciated with similar points ofQi is counted byci = maxj∈Ti cj + 1,
whereTi denotes a list of keypoint identifiers in one and two previ-
ous frames tracked byQi . Then, the score is added using a mono-
tonic increasing functionf :

score+= f (ci) − f (ci − 1). (1)

We experimented with three functions —f1 f2, and f3:

f1(c) = c, f2(c) =
√

c, and f3(c) =

 0 if c = 0

1 otherwise.
(2)

Apparently, f1 produces the same score as the conventional voting
scheme does, wherein each point match increments the score by
one. For f2 and f3 on the other hand, the added score becomes
smaller when the number of matches in successive frames becomes
larger. Thus bursty cases with long tracks of feature points will
get smaller scores. The most extreme function,f3, corresponds to
removal of multiple matches from the scoring function.

Finally, we obtain a list of results based on local features. Each
result includes the reference video identifier, corresponding times-
tamp offset, the updated score and frame-level scores as described
in Section 3.

5. GLOBAL-FEATURE-BASED CBCD
Figure 5 presents a functional diagram of our global-feature-based
CBCD system. The system relies on dense sampling of a video
frame at fixed locations, enabling the adoption of BoVW+II frame-
work and making it more robust against pattern insertions or other
weak geometric transformations. The scale of the features dictates
the window size to be used for computing the descriptor at that fea-
ture location. We have used scales that correspond to window sizes
greater than or equal to one-third the total width or height. Densely
sampled global features have been used previously for image clas-
sifications [7] or 3D model retrieval [8], with all sampled features
quantized into visual words and summarized in one histogram. In
our global-feature-based system, however, all sampled features are
used in the same manner as in the local-feature-based system in-
stead of summarizing in one histogram.

For a given scale, feature locations are chosen so that the neighbors
in the x and y directions overlap by at least 75%. A total of 121
windows results, although our approach for TRECVID used a sub-
set of only 40 such windows at the higher scales. Figure 6a shows
two such neighboring feature locations for a scale of one-third the
width and height of the image. In comparison with local features,
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Figure 5: Overview of global-feature-based CBCD.
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Figure 6: (a) shows two neighboring windows corresponding to a scale of
one-third the width and height. The feature locations (shown as circles)
are such that there is a 75% window overlap between neighbors; (b) shows
the two nested windows for making a bigram feature descriptor at a given
feature location and scale.

feature detection and scale selection of the selected features are un-
necessary, thereby increasing speed.

The indexing scheme for local-features-based on multiple code-
book product quantization to increase accuracy is not directly ap-
plicable to global features primarily because each image frame has
a small number of global features (40 in our case). In comparison,
for local features, each frame has a few thousand features. Given
the small number of features, emphasis on global features shifts
to an increase in recall rather than accuracy. To improve recall,
we propose multiple assignments on both the query and reference
sides. Another consequence of the small number of global fea-
tures is that the support region for each global feature is larger than
the support region for local features. Therefore a 128-dimensional
SIFT descriptor is not discriminative enough. We extract two SIFT
descriptors from each location and use their bigram along with mul-
tiple assignments for our BoVW+II-based indexing scheme.

5.1 Bigrams as feature descriptors
Conventional global descriptors such as rank-based features [9, 24]
are not distinctive enough for our dense sampling strategy. SIFT
descriptors [15] on the other hand are known to perform well. We
used bigrams of SIFT descriptors to make it more distinctive.

Given a feature location and scale, we extract two 128-dimensional
SIFT descriptors from the window corresponding to that scale and
use the bigrams as the descriptor for that feature location and scale.
The first descriptor is extracted from the full window, and the sec-

Query frameReference frame

Figure 7: Automatic correspondence determination based on position and
scale. The green features are corresponding locations. The red feature lo-
cations are neighbors in the reference frame and are included to make the
matching robust to small shifts.

ond descriptor is extracted from a subwindow centered on the fea-
ture location with a width and height half of that of the full window.
We quantize each of the two descriptors into 10,000 words indepen-
dently, with the global descriptor for that feature location and scale
then represented by their bigrams. Figure 6b shows the two nested
windows for bigram computation of a feature location and scale.

Essentially, this process is same as that for performing product
quantization on larger 256-dimensional vectors. Each of the 128-
dimensional SIFT descriptors can be seen as a subvector of the
larger 256-dimensional vector. As in product quantization, each of
the two 128-dimensional vectors is quantized independently. There-
fore this approach is efficient because the codebooks that need to
be stored in memory are smaller and the quantization step also in-
volves fewer distance computations. A vocabulary size of 10,000
for each of the words results in a bigram vocabulary size of 100
million. We have found that using the bigram results in much bet-
ter performance and also results in faster execution time.

5.2 Indexing with multiple assignments
We use the bigrams to make an inverted index and index each frame
of the reference video. The use of bigrams results in a large vocab-
ulary size; to increase recall, we use multiple assignments for both
the query and reference sides. Each descriptor in the bigram is as-
signed to five words. Therefore, each bigram in both the reference
and query side is assigned to 25 words.

5.3 Automatic geometric correspondence
On the query side, global features are computed in a manner similar
to that for the reference video. When querying, each feature loca-
tion in the query video corresponds to the same feature location and
scale in the reference video. Therefore, we do not have to perform
matching steps for the feature locations. To make the approach ro-
bust to small shifts, we also match it with its four neighbors in the
reference video with the same scale. Figure 7 demonstrates these
four neighbors in the reference video.

5.4 Special case: PIP detection
Because our global features are not scale-invariant, they do not
work well when the frame undergoes drastic changes in scale. There-
fore, the approach described so far does not work well for PIP trans-
formation. Instead, to detect PIP transformations, we detect rectan-
gular windows in the query video by accumulating image gradients
in the x and y directions over time. We run edge detection in each
video frame with a very low threshold and then accumulate the
number of edges in each row and column temporally. Rows and
columns with a sufficient number of accumulated edges are candi-
dates for the edges of the window. The intersection of a pair of row
and column edges is a candidate corner for the rectangular window.



Figure 8: Examples of detected PIP window.

Query frameReference frame

Figure 9: Geometric correspondence for the PIP transform. Matching is
performed relative to the detected window.

Finally, those windows with a sufficient number of edges in at least
two of the four sides are the candidate detected windows.

In our experiments, the thresholds we set result in our system miss-
ing very few such windows; however, the threshold also results in
the system occasionally detecting substantially more windows than
are actually present. Figure 8 show the detected PIP windows in a
few frames.

If a rectangular window is detected in the query window (for a PIP
transformation), the feature locations and scale are determined rel-
ative to the detected rectangular region instead of the whole frame
(see Figure 9). When a PIP window is detected, querying is per-
formed with the detected window in addition to the whole frame.
This takes care of false PIP detections.

5.5 Querying
For each query frame, we use the 40 global features to find a cor-
responding match in the reference frames. The score of a match is
simply the count of the number of global feature locations matched.
Each match results in a vote for the time offset corresponding to
that match. Temporal burstiness is also considered in the voting
step using an approach similar to that described in the local part:
we compare the bigrams from two consecutive features at the same
location; if either of the two words is the same, we do not use that
feature for our matching. This approach has similar effect to the
scoring method usingf3 described in Section 4.6. After voting,
non-maxima suppression and thresholding are also performed to
obtain the list of global results.

6. LOCAL-GLOBAL INTEGRATION
Each of the global and local modalities discussed above produces
a sorted list of results consisting of the reference video identifier,
corresponding timestamp offset, total score, and frame-level scores.
These results are sorted by the total scores, with the best result hav-
ing the highest total scores. These individual results are integrated
to produce a final list of results.

6.1 Integration and re-scoring
First, for each modality, all total scores are normalized by the sec-
ond top score to emphasize distinctiveness and normalize scores
among all queries. Then, any two modalities that indicate the same
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+
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Integrated scores f1 fi

Figure 10: Integration of frame-level scores. Frame-level scores are nor-
malized so that

∑T
t=1 f L

t = 1.0 and
∑T

t=1 f G
t = 1.0 before integration.

id and offset are integrated by simply summing the total scores.
Frame-level scores are also integrated frame-by-frame after they
are normalized so that the sum of frame-level scores becomes 1.0
as shown in Figure 10. We have found that this normalization step
slightly improves the accuracy of segment localization compared
with simple linear weighting.

6.2 Segment localization
Finally, start framêi and end framêj of the copied segment in the
query video is determined by

arg max
i, j

Si, j . (3)

Si, j is a partial sum of frame-level scores from framei to j normal-
ized by the segment length:

Si, j =

∑ j
t=i ft√

j − i + 1+ α + β
(4)

whereT denotes the number of keyframes in a query video and
f1, · · · , fT indicate frame-level scores. Although this is a brute-
force computation, use of integral image can greatly accelerate the
computation. In this paper, we setα = 40 andβ = 40.

7. EXPERIMENTS
We evaluated our CBCD system using the TRECVID 2009 dataset
[1]. To evaluate the video-only queries, we chose the 2009 dataset
rather than the most recent 2010 dataset because all queries in the
more recent dataset have both video and audio, precluding evalua-
tion of video-only queries. Furthermore, because the 2010 dataset
includes only Internet videos, we believe that the 2009 dataset is
more representative for copyright content protection. The 2009
dataset includes 838 reference videos (about 400 hours in total)
and 1,407 query videos. Each query has been edited by the seven
transformations listed in Table 1, including both photometric trans-
formations and geometric transformations.

In the framework of the TRECVID CBCD task, a CBCD system is
characterized by three key performance measures:

Detection accuracy.Normalized detection cost rate (NDCR)2 is
used to evaluate the detection accuracy fairly among differ-
ent systems. NDCR measures the trade-off between the cost
of false negatives and false positives, and is defined by a
weighted mean of the two errors. There are two profiles,
referred to as BALANCED and NOFA, that are related to
NDCR weighting. Although the former assigns balanced
weights to both false negatives and false positives, the latter
assigns much greater weight to false positives. In this paper,
we show results only for the NOFA profile because NDCR

2http://www-nlpir.nist.gov/projects/tv2010/
Evaluation-cbcd-v1.3.htm



Table 1: Query transformations.

T2 Picture in picture
T3 Insertions of pattern
T4 Strong re-encoding
T5 Change in gamma
T6 Decrease in quality (combinations of 3 transfor-

mations from blur, gamma, frame dropping, con-
trast, compression, ratio, and noise)

T8 Post production (combinations of 3 transforma-
tions from crop, shift, contrast, caption, flip, in-
sertion of pattern, and picture in picture)

T10 Combinations of 5 transformations from T2-T8

values become almost the same for BALANCED and NOFA
profiles on the TRECVID 2009 settings.

Localization accuracy. The accuracy of localization is measured
by the F-measure, which is the harmonic mean of the preci-
sion and recall of the detected copy location relative to the
true video segment. It is calculated only for correctly de-
tected queries, and it reflects the overlapped area between
the detected query and reference segments.

Efficiency. Efficiency is evaluated by the mean processing time per
query.

7.1 Performance evaluation of the local approach
Figure 11 compares the results of different local schemes using
the NDCR measure for different video transformations.Baseline
scheme (described in Section 4) does not have multiple codebooks
for product quantization and neither does it handle temporal bursti-
ness. This scheme is quite similar to the framework described
in [5], with minor differences arising because we use USIFT fea-
tures and also product-quantization-based indexing.MPQ+f1, MPQ
+f2, andMPQ+f3 correspond to our proposed scheme with multiple-
codebook-based product quantization (MPQ) and temporal-burstiness-
aware scoring usingf1, f2, and f3 measures described in Section 4.6.
As mentioned,f1 produces the same score as the conventional vot-
ing scheme. Therefore, the improvement inMPQ+f1 when com-
pared withBaseline demonstrates the contribution of multiple code-
books for product quantization. It is also clear that handling tem-
poral burstiness significantly affects performance (f2 and f3), espe-
cially in T5 and T8 transformations. It is surprising that the most
extreme scoring functionf3 achieved the best performance, because
it was not the best choice in the case of spatial burstiness3. It im-
plies that temporal burstiness appears much more frequently and is
more important for accuracy than spatial burstiness. On an average,
our proposed scheme results in an almost two-fold decrease in the
NDCR measure against the baseline scheme.

7.2 Performance evaluation of the global ap-
proach

Figure 12 shows the evaluation results of various global schemes.
Bigram+MA is our proposed scheme with bigrams and multiple as-
signments (MA) as presented in Section 5. Without bigram (w/o
bigram) uses a single 128-dimensional SIFT descriptor. The code-
book size in this case is 10,000, and indexing is done with five mul-
tiple assignments both on the query and reference sides. It is clear

3 f3 corresponds to multiple match removal (MMR) in [11].
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Figure 11: NDCR measures of a local CBCD system for a NOFA profile.
Lower values mean better results. Performance of the baseline scheme (see
text) is compared with Multiple Product Quantization (MPQ) and the three
scoring schemesf 1, f 2 and f 3.
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Figure 12: NDCR measures of a global CBCD system for the NOFA profile.
Lower values mean better results. Results from our proposed scheme (bi-
gram+MA) are compared with schemes without multiple assignments (MA)
on the reference (w/o ref) and query side (w/o query) and also without bi-
gram (w/o bigram).

that bigram contributes significantly to accuracy. To assess the con-
tribution of multiple assignments, we also evaluate two schemes
based on bigrams but without multiple assignments:w/o ref MA
doesnothave multiple assignments on the reference side and simi-
larly w/o query MA doesnothave multiple assignment on the query
side. It is also clear from Figure 12 that multiple assignments are
also crucial for a good NDCR. In addition, the performance ofw/o
query MA is quite close to our scheme. Becausew/o query MA
has multiple assignments in the reference, it is clear that multiple
assignments in the reference video make the largest contribution to
accuracy. As in local approach, on average, our proposed scheme
with bigrams and multiple assignments results in an almost two-
fold decrease in the NDCR measure.

7.3 Performance evaluation of the integrated
results

Figure 13 shows the results of both local (MPQ+f3), global-feature-
based (bigram+MA) and integrated schemes for the NOFA pro-
file. The best scores among all participants of the TRECVID 2009
CBCD task for each video transformation are also shown. In all
cases, except T6 and T8, the global features perform better than
the best reported results. Furthermore, our global features perform
better than local features for transformations T2 and T4 and are
almost on a par with those for T5. Whereas we expect global fea-
tures to perform better for the photometric transformations T4 and
T5, the strong performance for T2 is primarily due to our special
PIP handling (Section 5.4). Our local features consistently outper-
form the best reported system, and they make the greatest contri-
bution in complex transformations such as T6 and T8. Finally, it
is clear that the integration of the two substantially improves accu-
racy, especially for transformations T3 through T6. That improve-
ment demonstrates that the results of local and global schemes are
consistent, thereby increasing accuracy. For other transformations,
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Figure 13: NDCR measures for the NOFA profile. Results are shown for
our local, global and integrated scheme. The best scores from participants
of TRECVID 2009 CBCD task are also shown.

Table 2: Localization accuracy (F-measure).
T2 T3 T4 T5 T6 T8 T10

Global 0.937 0.938 0.936 0.940 0.939 0.936 0.941
Local 0.943 0.920 0.934 0.930 0.913 0.931 0.931
Integrated 0.960 0.952 0.949 0.961 0.946 0.957 0.956

the integration of these two schemes results in performance some-
where midway between the performances of either scheme. On
average, our integrated system results in a three-fold improvement
in accuracy when compared with the best reported results.

7.4 Evaluations based on other criteria
Table 2 shows the localization accuracy of our schemes. It is clear
that our schemes have achieved almost perfect performance in terms
of segment localization criteria (perfect performance corresponds
to a score of 1.0). Our localization accuracy is high because the
copied segments are localized at a later stage, after the video id and
offsets have been determined. It can also be seen that integration of
local and global features increases localization accuracy.

For all our experiments, we used a Windows XP system with a
Core i7 2.93 GHz CPU and 24 GB main memory. In terms of
computational cost, on average our scheme required 121 seconds
per query. Our time is longer than the median for all participants
in TRECVID 2009 (median was about 80 seconds), whereas the
global part required only 15 seconds out of 121 seconds.

8. CONCLUSION
Our system for CBCD of video is multimodal and integrates both
local and densely sampled global features to produce robust results.
We have proposed novel indexing schemes to efficiently and ac-
curately perform retrieval using both these features. Advances in
local indexing include optimized multiple-codebook-based prod-
uct quantization to increase NNS accuracy. On the global side, we
have used bigrams along with multiple assignments in indexing.
We have validated our choice of indexing with extensive experi-
mental results. We have also demonstrated that it is important to
handle temporal burstiness to suppress false alarms and have pre-
sented a scoring method that accounts for temporal burstiness.

Results on a large dataset of over 400 hours of video demonstrate
that both our global and local schemes outperform the best algo-
rithm presented in the TRECVID 2009 workshop. The integration
of these two schemes results in a three-fold reduction in the error
rate. Furthermore, our scheme yields very good segment localiza-
tion results and its computational time is almost the same as other
state-of-the-art algorithms. Future work includes integrating these
two features more tightly at the frame level and also adding audio

features in our framework to handle very difficult video transfor-
mations. We are also investigating specialized algorithms for hard
video transformations such as camcording.
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