ACCURATE FEATURE MATCHING AND SCORING FOR RE-RANKING IMAGE RETRIEVAL RESULTS

Yusuke Uchida, Shigeyuki Sakazawa

KDDI R&D Laboratories, Inc., Japan

ABSTRACT
In this paper, a new reranking approach is proposed to refine the results obtained with a bag-of-visual words (BoVW) image retrieval method. First, a simple but effective criterion to reject unreliable feature matches is proposed, where the information of nearest neighbors from a large dataset is used to accurately estimate feature density. Second, by adopting a product quantization-based nearest neighbor method in both the voting and reranking steps, it becomes possible to reuse the information obtained in the BoVW method in the reranking step. Finally, a density ratio-based scoring method is naturally integrated to calculate a new score from inliers.

Index Terms— Specific object recognition, bag-of-visual words, product quantization, geometric verification, feature matching

1. INTRODUCTION
With the advancement of both stable interest region detectors [1, 2] and robust and distinctive descriptors [1, 3], local feature-based image or object retrieval has attracted a great deal of attention. It has become particularly applicable to large-scale databases with a bag-of-visual words (BoVW) framework [4]. In the BoVW framework, local feature points or regions are detected from an image, and feature vectors are extracted from them. These feature vectors are quantized into visual words (VWs) using a visual codebook, resulting in a histogram representation of VWs. Image similarity is measured by L_1 or L_2 distance between the normalized histograms. As VW histograms are generally very sparse, an inverted index data structure and a voting function enables an efficient similarity search. A term frequency-inverse document frequency (TF-IDF) weighting scheme is naturally integrated with the voting function [4].

Although the BoVW framework realizes efficient retrieval, there is some room for improvement in terms of accuracy. One significant drawback of VW-based matching is that two features are matched if and only if they are assigned to the same VW [5]. There are two major expansions of the voting function to alleviate this problem: post-filtering [5, 6] and multiple assignment [7, 5]. In post-filtering, after VW-based matching, unreliable matches are filtered out according to (estimated) distances between query and reference features. In multiple assignment, query features vote not only for reference features in the nearest VW but also for reference features in the k-nearest VWs. The use of weak geometric information in conjunction with the BoVW framework also improves the performance [5, 8], where the IDF scores are voted for orientation and scale space associated with feature matches [5], or position space of target objects [8]. Finally, query expansion [9] and geometric verification [10] are performed to refine scores obtained with the voting function.

Geometric verification is a very important step to refine the scores obtained with the voting function by filtering out outliers of feature matches and reranking the first result. However, reranking based on geometric verification sometimes degrades accuracy in real applications because target objects are generally assumed to be planar and rigid. This is the case when recognizing non-planar product packages or deformable objects such as magazines or books. Although there are a few approaches to detect or track deformable objects [11], it is time consuming in one-to-many matching which is required in reranking.

In this paper, in order to improve the results obtained with the voting function without geometric information, a new reranking approach based on effective feature matching and scoring is proposed. In Section 2, conventional feature matching methods and their problems are explained. In Section 3, a simple and effective criterion to reject unreliable feature matches based on the probabilistic density function (PDF) of local features is proposed, where the information of nearest neighbors from a large dataset is used to accurately estimate the PDF. In Section 4, the proposed criterion is integrated with a state-of-the-art product quantization-based framework [6, 12], where the information of nearest neighbors obtained in the BoVW framework is reused in the reranking step for efficiency. An effective density ratio-based scoring method [13] is adopted in the framework to obtain final scores.

2. RERANKING BASED ON GEOMETRIC VERIFICATION
The results obtained in voting can be improved with reranking based on geometric verification [10], where the spatial consis-
Denoting by \(p(q|\hat{r}) \) the probability that \(q \) is generated independently of \(R \). Denoting by \(p(q|R) \) the probability that \(q \) is generated from one of the features in the target image \(R \), it is clear that an inequality \(p(q|\hat{r}) \leq p(q|R) \) holds. Due to the long-tail characteristic of feature distributions, almost all of the features are rather isolated in the feature space \([18]\). In other words, \(p(q|r) \approx 0 \) for \(r \neq \hat{r} \). Hence, \(p(q|R) \) is a good approximation of \(p(q|\hat{r}) \). The likelihood ratio \(p(q|\hat{r})/p(q) \) is now approximated by \(p(q|R)/p(q) \).

Here, we assume a distance list \((d_1, \cdots, d_T)\) with size \(T \) is available, where \(d_t \) is the distance between \(q \) and the \(t \)-th nearest neighbor feature in a large, independent database as shown in Figure 1 (a). Using the distance list, \(p(q|R) \) and \(p(q) \) are estimated via \(k \)-nearest neighbor density estimation:

\[
p(q|R) = \frac{1}{|R| \cdot V_d}, \quad p(q) = \frac{\hat{t}}{|R_{\text{DB}}| \cdot V_d},
\]

where \(|R| \) is the number of features in \(R \), \(|R_{\text{DB}}| \) is the number of features in the database, \(V_d \) is the volume of a hypersphere with radius \(\delta \), \(\delta \) is the distance between \(q \) and \(\hat{r} \), and \(\hat{t} \) is the smallest \(t \) that satisfies \(d_{\hat{t}} < d_t \). As shown in Figure 1 (b), for \(p(q|R) \) and \(p(q) \), \(k = 1 \) and \(k = \hat{t} \) are respectively used in \(k \)-nearest neighbor density estimation; in the case of \(p(q|R) \), one feature \(\hat{r} \) out of \(R \) exists in the hypersphere, while, in the case of \(p(q) \), \(\hat{t} \) features including \(\hat{r} \) out of \(R_{\text{DB}} \) exist in the hypersphere. Now the criterion to reject the tentative match associated with \(q \) is:

\[
p(q|\hat{r})/p(q) \approx \frac{|R_{\text{DB}}|}{\hat{t} \cdot |R|} < th.
\]

As Eq. (2) can be written as \(\hat{t} > |R_{\text{DB}}|/(|R| \cdot th) \), we can use \(T' = |R_{\text{DB}}|/(|R| \cdot th) \) \((T' \leq T) \) as a new threshold for \(\hat{t} \).

To summarize, the proposed method consists of the following simple procedures: (1) calculate the distance \(\hat{d} \) from \(q \) to its nearest neighbor \(\hat{r} \) in a target image \(R \), (2) calculate the distances \(d_1, \cdots, d_T \) from \(q \) to its \(T \) nearest neighbors in a large dataset, and (3) reject the tentative match associated with \(q \) if \(\hat{d} > d_{T'} \).

In this paper, we refer to the criterion as a rank criterion because \(\hat{r} \) corresponds to the rank of \(\hat{r} \) in a distance list. In the case of Figure 1 (a), where \(T' = T = 4 \), the tentative match associated with \(q_1 \) is considered to be an inlier, while that with \(q_2 \) is rejected. It is desirable to obtain distance lists from a large database, because, if an infinite number of samples is available, the density estimated using the \(k \) nearest neighbor method converges to the true density. However, obtaining distance lists from a large database imposes a heavy computational burden. In the next section, we propose the framework where a overhead becomes negligible because we reuse distance lists of query features which have been already obtained in the process of index search.

4. PROPOSED FRAMEWORK

In this section, we describe the proposed framework, which naturally integrates the state-of-the-art product quantization-based image retrieval method \([6, 12, 13]\) with the proposed...
reranking method. In the reranking step, we also adopt the product quantization-based distance calculation method with different settings. This enables efficient matching and makes distance lists obtained in the index search compatible with distances calculated in the reranking step. New scores are calculated and voting results are refined according to feature matches which satisfy the proposed criterion described in Section 3. Figure 2 provides an overview of the proposed framework and the data structure used in the framework.

4.1. Feature detection and description

From query and reference images, a set of feature vectors is extracted. We adopt Hessian-Affine [19] and SIFT [1] as the feature detector and descriptor, respectively. We denote the \(j \)-th feature vector of the \(i \)-th reference image by \(r_{ij} \in \mathbb{R}^d \), and the \(i \)-th feature vector of the \(j \)-th reference image by \(r_{ji} \in \mathbb{R}^d \).

4.2. Feature indexing with product quantization

We adopt a product quantization-based method [6] to improve the BoVW framework, namely IVFADC. In the indexing (offline) step in IVFADC, a reference vector \(r_{jh} \), with \(d \) dimension, is quantized with a coarse quantizer in the same way as the BoVW framework. We refer to the codebook used in coarse quantization as the CQ codebook. This is the same as what is referred to as visual words or a visual codebook in the context of BoVW-based image retrieval or recognition.

In the indexing step, a reference vector \(r_{jh} \) is first quantized into \(c_{ã} \) using the CQ codebook \(C \) with \(k' \) centroids \(c_1, \cdots, c_{k'} \in \mathbb{R}^d \), where

\[
\hat{a} = \arg \min_{1 \leq a \leq k'} ||r_{jh} - c_{a}||^2. \tag{3}
\]

Subsequently, the residual vector \(\tilde{r}_{jh} \) from the corresponding centroid \(c_{ã} \) is calculated as \(\tilde{r}_{jh} = r_{jh} - c_{ã} \). Then, the residual vector \(\tilde{r}_{jh} \) is decomposed into \(u \) subvectors \(\tilde{r}_{jh}^1, \cdots, \tilde{r}_{jh}^u \in \mathbb{R}^{d^*} \), where \(d^* = d/u \). Subsequently, these subvectors are quantized separately using \(u \) codebooks \(P_1, \cdots, P_u \). This is referred to as product quantization. In this paper, a codebook used in product quantization is referred to as a PQ codebook. We assume that each PQ codebook \(P_j \) has \(k^* \) centroids \(p_{k1}, \cdots, p_{kKj} \in \mathbb{R}^{d^*} \). Using the \(l \)-th PQ codebook, the \(l \)-th subvector \(\tilde{r}_{jh}^{l} \) is quantized into \(b_{lj} \), where

\[
b_{lj} = \arg \min_{1 \leq b \leq k^*} ||\tilde{r}_{jh}^{l} - p_{lj}||^2. \tag{4}
\]

Finally, the short code \((b_1, \cdots, b_u) \) is stored in the \(ã \)-th list of the inverted index with the identifier \(j \) of the reference image. The size of the short code is represented by \(u \log_{2} k^* \) bits.

In addition, local features are stored independently of the inverted index for reranking. This is needed because in reranking each local feature of a query image should be compared with the features of each of the images in a shortlist. In IVFADC, residual vectors are encoded by product quantization, while original SIFT vectors are encoded here, which is referred to as ADC in [6]. Note that we can choose an arbitrary number \(u' \) of vector decomposition independent of \(u \).

4.3. Index search

In the search step in IVFADC, the \(T \) nearest features \(T_N(q_i) \) of \(q_i \) are obtained from the inverted index. A query vector \(q_i \) is first quantized using the CQ codebook, and the residual vector \(\tilde{q}_i \) from the corresponding centroid is calculated in the same manner as the indexing. Subsequently, the distance between the residual vector \(\tilde{q}_i \) and short codes \((b_1, \cdots, b_u) \) in the corresponding list in the inverted index are calculated.
These distances correspond to the approximate distances between the query vector q_i and the reference vectors r_{jh}:

$$d(q_i, r_{jh}) = d(\tilde{q}_i, \tilde{r}_{jh}) \approx \sum_{l=1}^{u} ||\tilde{q}_i^l - \tilde{p}_{lh}||^2. \quad (5)$$

This distance calculation is performed efficiently using a precomputed lookup table [6]. Finally, the T nearest features $\mathcal{N}_T(q_i)$ of q_i are obtained by sorting according to the distances. The distances obtained in this process are reused in the reranking step described in Section 4.5.

4.4. Voting scores

Once the T nearest neighbors $\mathcal{N}_T(q_i)$ of q_i are obtained with the index search, the scores are voted for the reference images associated with $\mathcal{N}_T(q_i)$. We adopt density ratio-based scoring [13], which has been shown to be superior to IDF scoring. The voting score s_{ij} from query feature q_i to reference image R_j is calculated using the k nearest neighbors of q_i as

$$s_{ij} = \log(\frac{\lambda}{1 - \lambda} \frac{|\mathcal{N}_T(q_i)|}{|\mathcal{R}_j|} + 1), \quad (6)$$

where $|\mathcal{N}_T(q_i)| = T$, and $|\mathcal{N}_T(q_i)|$ is the number of features in $\mathcal{N}_T(q_i)$ associated with R_j, and λ denotes an adjustable parameter that controls the strength of the prior distribution of $p(q_i | R_j)$. For each q_i, the voting score s_{ij} is assigned to each R_j. The resulting $\sum_i s_{ij}$ corresponds to the similarity measure between Q and R_j, and a voting result is obtained.

4.5. Nongeometric reranking with density ratio scoring

For each of the top M images in a voting result (shortlist), new scores are calculated to refine the first result. First, approximate distances are calculated in the manner described in Section 4.3, and the distance d_i from q_i to its nearest feature \tilde{r}_i in a target image in the shortlist is obtained.

The distance lists from the index search are used to reject unreliable matches: given a distance list d_{i1}, \ldots, d_{iT} for query feature q_i, the tentative match associated with q_i is rejected if $d_i > d_{iT}$. In this paper, as the proposed criterion is very reliable, geometric verification is skipped and reranking is performed using the non-rejected tentative matches. Instead of simply counting the number of inliers, sum of modified version of scores in Eq. (6) is used as the new score:

$$s_i = \log(\frac{\lambda}{1 - \lambda} \frac{1}{|\mathcal{R}|} + 1), \quad (7)$$

where the same density estimation is performed as Eq. (1).

5. EXPERIMENTAL EVALUATION

5.1. Evaluation of matching accuracy

The proposed rank criterion described in Section 3 is compared with the conventional ratio criterion in terms of the matching accuracy of local features. The Graffiti dataset [2] is used for the evaluation. The dataset consists of 8 scenes and each of the scenes contains 6 images with a gradual geometric or photometric transformation such as viewpoint changes, image blur, JPEG compression, or illumination. We use the first and second images from each of the scenes for the evaluation. In order to obtain distance lists, 10,000 images are used out of the MIRFLICKR-1M dataset. Approximate distance lists are obtained with the approximate nearest neighbor search method described in Section 4.3. The ground truth homographies between the first image and the others in each scene are also provided, tentative matches with projection error greater than 5.0 pixels are considered as outliers.

Figure 3 shows the precision vs. recall curves for the proposed rank criterion and the conventional ratio criterion. Both exact distances and approximate distances are used in matching: the prefixes A8 and A16 indicate that approximate distances are calculated using 8-byte ($u' = 8$) and 16-bytes ($u' = 16$) short codes, respectively. For the proposed method, the threshold T' ranges from 1 to 10, and for the conventional method, the threshold α ranges from 0.8 to 1.0. It is shown that the proposed criterion outperforms the conventional criterion even if approximate distances are used for the proposed criterion and exact distances are used for the conventional criterion. It can also be said that, with the proposed criterion, the degradation of the performance caused by approximate distances is also alleviated owing to the use of an independent, large dataset. The memory requirement is the same for both the proposed method and the conventional method: A8, A16, and Exact requires 8, 16, and 128 bytes per descriptor, respectively. Computational costs are explored in the following section.

5.2. Evaluation of reranking methods

In this section, the proposed framework is evaluated in terms of image retrieval accuracy using the University of Kentucky recognition benchmark dataset provided by the authors of [20]. The dataset includes 2,550 different objects or scenes. Each of these objects is represented by four images taken from four different angles, giving a total of 10,200 images. These images are used as both reference and query images. Mean average precision (MAP), the area under the precision-recall curve, is used as an indicator of performance [20, 5]. Standard parameter settings [5, 6, 12] are used in our experiments. The size k' of the visual codebook is set to 20K. In indexing, reference features are divided into 8 16-dimensional
parameters were not particularly sensitive to the performance of the proposed method, we set $T_k = 256$ centroids ($u = 8$), resulting in 8×8 bit code. For the proposed method, we set $T = 24$ and $T' = 10$. These parameters were not particularly sensitive to the performance (greater is better) in preliminary experiments.

Figure 4 shows accuracy as a function of λ before and after reranking. The MAP score of the baseline system (before reranking) is 0.882. The scores of the top 20 images in a shortlist are refined with the proposed method for Prop using exact and approximate distances. We can see that the accuracy in image retrieval is also improved by the proposed method without geometric information. It is also shown that the accuracy of A16 is comparable with Exact, which is consistent with the results in Section 5.1.

Table 1 shows the processing time required for the proposed method. The processing time required for A8 and A16 can be decomposed into two parts: processing time for table construction (for each query) and distance calculation with table lookups (for each of the images in the shortlist). Top20, Top50, and Top100 represent the processing times required to rerank the top 20, 50, and 100 images in the shortlist, respectively. All distance calculations are optimized with SIMD operations. In the experiment more than 3,000 features are used. As computational cost is proportional to the square of the number of features, if the number of features is reduced to around 1,000, the computational cost is reduced by an order of magnitude. Table 2 also summarizes the MAP scores of the proposed method with the same parameter settings. We observe: (1) there is no significant differences in accuracy between A16 and Exact while Exact requires a large computational cost (almost three times larger than A16), (2) using top 50 and 100 images does not improve accuracy greatly, while causing a linear increase in computational cost.

We also conducted reranking based on geometric verification, where a score in a shortlist is replaced by a new score if the number of inliers is greater than a threshold. The MAP was degraded from 0.882 to 0.871 due to failures in homography estimation for nonplanar or textureless objects and false

![Fig. 3: 1−precision vs. recall curves for the ratio criterion and the proposed criterion. Both exact distance and approximate distance are used in matching. From 3,000 to 5,000 features are extracted with default parameters.](image-url)

![Fig. 4: Accuracy of the proposed framework with different distance calculation scenarios as a function of λ.](image-url)
positives. Figure 5 shows examples of nonplanar or textureless objects in the database for which homography estimation failed. The proposed method can improve accuracy even against these queries.

6. CONCLUSIONS

In this paper, we proposed a new feature matching criterion and nongeometric reranking method for large-scale image retrieval. The reuse of the information obtained in the BoVW framework enables accurate feature matching and sophisticated scoring in the reranking. In the experiments, we confirmed that the proposed method can improve the results even if geometric information is not used. As a future research topic, we are interested in the utilization of the proposed rank criterion as a priority measure for tentative matches in PROSAC [21].

7. REFERENCES

Table 1: Processing time required in the proposed system [sec].

<table>
<thead>
<tr>
<th></th>
<th>Table</th>
<th>Distance</th>
<th>Top20</th>
<th>Top50</th>
<th>Top100</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8</td>
<td>0.027</td>
<td>0.058</td>
<td>1.193</td>
<td>2.942</td>
<td>5.857</td>
</tr>
<tr>
<td>A16</td>
<td>0.040</td>
<td>0.102</td>
<td>2.074</td>
<td>5.125</td>
<td>10.210</td>
</tr>
<tr>
<td>Exact</td>
<td>-</td>
<td>0.291</td>
<td>5.810</td>
<td>14.525</td>
<td>29.050</td>
</tr>
</tbody>
</table>

Table 2: Comparison of different parameter settings for the proposed method.

<table>
<thead>
<tr>
<th></th>
<th>Top20</th>
<th>Top50</th>
<th>Top100</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8</td>
<td>0.890</td>
<td>0.891</td>
<td>0.890</td>
</tr>
<tr>
<td>A16</td>
<td>0.897</td>
<td>0.902</td>
<td>0.904</td>
</tr>
<tr>
<td>Exact</td>
<td>0.899</td>
<td>0.904</td>
<td>0.907</td>
</tr>
</tbody>
</table>

Fig. 5: Examples of nonplanar or textureless objects in the database. The top, middle, and bottom row correspond to the 94, 384, and 2274-th objects, respectively.