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ABSTRACT

In this paper, a new reranking approach is proposed to refine
the results obtained with a bag-of-visual words (BoVW) im-
age retrieval method. First, a simple but effective criterion to
reject unreliable feature matches is proposed, where the in-
formation of nearest neighbors from a large dataset is used
to accurately estimate feature density. Second, by adopting a
product quantization-based nearest neighbor method in both
the voting and reranking steps, it becomes possible to reuse
the information obtained in the BoVW method in the rerank-
ing step. Finally, a density ratio-based scoring method is nat-
urally integrated to calculate a new score from inliers.

Index Terms— Specific object recognition, bag-of-visual
words, product quantization, geometric verification, feature
matching

1. INTRODUCTION

With the advancement of both stable interest region detec-
tors [1, 2] and robust and distinctive descriptors [1, 3], lo-
cal feature-based image or object retrieval has attracted a
great deal of attention. It has become particularly applicable
to large-scale databases with a bag-of-visual words (BoVW)
framework [4]. In the BoVW framework, local feature points
or regions are detected from an image, and feature vectors
are extracted from them. These feature vectors are quantized
into visual words (VWs) using a visual codebook, resulting
in a histogram representation of VWs. Image similarity is
measured by L1 or L2 distance between the normalized his-
tograms. As VW histograms are generally very sparse, an
inverted index data structure and a voting function enables an
efficient similarity search. A term frequency-inverse docu-
ment frequency (TF-IDF) weighting scheme is naturally inte-
grated with the voting function [4].

Although the BoVW framework realizes efficient re-
trieval, there is some room for improvement in terms of ac-
curacy. One significant drawback of VW-based matching is
that two features are matched if and only if they are assigned
to the same VW [5]. There are two major expansions of the
voting function to alleviate this problem: post-filtering [5, 6]
and multiple assignment [7, 5]. In post-filtering, after VW-
based matching, unreliable matches are filtered out according

to (estimated) distances between query and reference features.
In multiple assignment, query features vote not only for refer-
ence features in the nearest VW but also for reference features
in the k-nearest VWs. The use of weak geometric information
in conjunction with the BoVW framework also improves the
performance [5, 8], where the IDF scores are voted for ori-
entation and scale space associated with feature matches [5],
or position space of target objects [8]. Finally, query expan-
sion [9] and geometric verification [10] are performed to re-
fine scores obtained with the voting function.

Geometric verification is a very important step to re-
fine the scores obtained with the voting function by filtering
out outliers of feature matches and reranking the first result.
However, reranking based on geometric verification some-
times degrades accuracy in real applications because target
objects are generally assumed to be planar and rigid. This
is the case when recognizing non-planar product packages or
deformable objects such as magazines or books. Although
there are a few approaches to detect or track deformable ob-
jects [11], it is time consuming in one-to-many matching
which is required in reranking.

In this paper, in order to improve the results obtained
with the voting function without geometric information, a
new reranking approach based on effective feature matching
and scoring is proposed. In Section 2, conventional feature
matching methods and their problems are explained. In Sec-
tion 3, a simple and effective criterion to reject unreliable
feature matches based on the probabilistic density function
(PDF) of local features is proposed, where the information
of nearest neighbors from a large dataset is used to accu-
rately estimate the PDF. In Section 4, the proposed criterion is
integrated with a state-of-the-art product quantization-based
framework [6, 12], where the information of nearest neigh-
bors obtained in the BoVW framework is reused in the rerank-
ing step for efficiency. An effective density ratio-based scor-
ing method [13] is adopted in the framework to obtain final
scores.

2. RERANKING BASED ON GEOMETRIC
VERIFICATION

The results obtained in voting can be improved with reranking
based on geometric verification [10], where the spatial consis-



tency among a query image and reference images is used as a
constraint to filter out outliers. Because geometric verification
is more time consuming than BoVW scoring, it is performed
only on a shortlist of top scoring images. Reranking based on
geometric verification mainly consists of the following steps:
(1) for each feature q in a query image Q, perform nearest
neighbor matching against features in a target image and ob-
tain a tentative match, (2) estimate an affine or homography
matrix using the tentative matches, and (3) replace the score
between the query image and the target image by the number
of inliers or the sum of IDF scores of inliers which satisfy
the affine or homography matrix constraint. Because tenta-
tive matches include many outliers, it is necessary to filter out
unreliable matches to obtain stable results.

There are two directions to improve the accuracy of ten-
tative matches. One is to use sophisticated (dis)similarity
measures: Chi-squared distance [14], Hellinger kernel [9], or
earth mover’s distance (EMD) [15] is used as (dis)similarity
measures. The other is to filter out unreliable matches based
on a matching criterion. The most frequently used criterion
is ratio criterion [1, 3, 14, 16] to filter out unreliable matches:
if the ratio of the best distance d1 and the second best dis-
tance d2 is greater than a threshold α (typically 0.8), the ten-
tative match is rejected. This ratio criterion works better than
the distance criterion [3] because SIFT features are not dis-
tributed uniformly in the feature space [12] and a constant
threshold cannot cope with this aspect. The ratio criterion is
adaptive to some extent according to feature distribution, and
it is also generic and not restricted to the Euclidean distance
(e.g., it is applied to the Hamming distance [16], the Chi-
squared distance [14], and EMD [15]). However, the ratio
criterion does not work well in some situations. First, it does
not work if multiple similar features are detected from near re-
gions; this is often the case for the Hessian-Affine detector [2]
or the multi-scale FAST detector [17], for instance. Second,
its performance degrades if approximate distances are used
because feature distribution is estimated using only a single
target image, and is thus sensitive to noise. This often hap-
pens when features are encoded into compact codes [6, 16, 5]
for memory and time efficiency. In the next section, to address
these issues, we propose a new criterion based on the density
of local features, which is estimated using a large dataset in-
dependent of the target image.

3. PROPOSED CRITERION

Using the proposed criterion, the tentative match between q
and its nearest neighbor r̂ is rejected if the likelihood ratio
p(q|r̂)/p(q) is smaller than the threshold th , where r̂ denotes
the nearest neighbor feature in the target image R, p(q|r̂) de-
notes the probability that q is generated from r̂, and p(q) de-
notes the probability that q is generated independently of R.
Denoting by p(q|R) the probability that q is generated from
one of the features in the target image R, it is clear that an

inequality p(q|r̂) ≤ p(q|R) holds. Due to the long-tail char-
acteristic of feature distributions, almost all of the features
are rather isolated in the feature space [18]. In other words,
p(q|r) ≈ 0 for r ̸= r̂. Hence, p(q|R) is a good approximation
of p(q|r̂). The likelihood ratio p(q|r̂)/p(q) is now approxi-
mated by p(q|R)/p(q).

Here, we assume a distance list (d1, · · · , dT ) with size T
is available, where dt is the distance between q and the t-th
nearest neighbor feature in a large, independent database as
shown in Figure 1 (a). Using the distance list, p(q|R) and
p(q) are estimated via k-nearest neighbor density estimation:

p(q|R) =
1

|R| · Vd̂

, p(q) =
t̂

|RDB| · Vd̂

, (1)

where |R| is the number of features in R, |RDB| is the number
of features in the database, Vd̂ is the volume of a hypersphere
with radius d̂, d̂ is the distance between q and r̂, and t̂ is the
smallest t that satisfies d̂ < dt. As shown in Figure 1 (b), for
p(q|R) and p(q), k = 1 and k = t̂ are respectively used in
k-nearest neighbor density estimation; in the case of p(q|R),
one feature r̂ out of R exists in the hypersphere, while, in the
case of p(q), t̂ features including r̂ out of RDB exist in the
hypersphere. Now the criterion to reject the tentative match
associated with q is:

p(q|r̂)
p(q)

≈ |RDB|
t̂ · |R|

< th. (2)

As Eq. (2) can be written as t̂ > |RDB|/(|R| · th), we can use
T ′ = |RDB|/(|R| · th) (T ′ ≤ T ) as a new threshold for t̂.

To summarize, the proposed method consists of the fol-
lowing simple procedures: (1) calculate the distance d̂ from
q to its nearest neighbor r̂ in a target image R, (2) calculate
the distances d1, · · · , dT from q to its T nearest neighbors in
a large dataset, and (3) reject the tentative match associated
with q if d̂ > d′T .

In this paper, we refer to the criterion as a rank criterion
because t̂ corresponds to the rank of r̂ in a distance list. In the
case of Figure 1 (a), where T ′ = T = 4, the tentative match
associated with q1 is considered to be an inlier, while that
with q2 is rejected. It is desirable to obtain distance lists from
a large database, because, if an infinite number of samples
is available, the density estimated using the k nearest neigh-
bor method converges to the true density. However, obtaining
distance lists from a large database imposes a heavy computa-
tional burden. In the next section, we propose the framework
where a overhead becomes negligible because we reuse dis-
tance lists of query features which have been already obtained
in the process of index search.

4. PROPOSED FRAMEWORK

In this section, we describe the proposed framework, which
naturally integrates the state-of-the-art product quantization-
based image retrieval method [6, 12, 13] with the proposed
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Fig. 1: Overview of the proposed method.

reranking method. In the reranking step, we also adopt the
product quantization-based distance calculation method with
different settings. This enables efficient matching and makes
distance lists obtained in the index search compatible with
distances calculated in the reranking step. New scores are
calculated and voting results are refined according to fea-
ture matches which satisfy the proposed criterion described
in Section 3. Figure 2 provides an overview of the proposed
framework and the data structure used in the framework.

4.1. Feature detection and description

From query and reference images, a set of feature vectors is
extracted. We adopt Hessian-Affine [19] and SIFT [1] as the
feature detector and descriptor, respectively. We denote the
i-th feature vector of the query image by qi ∈ Q and the h-th
feature vector of the j-th reference image by rjh ∈ Rj .

4.2. Feature indexing with product quantization

We adopt a product quantization-based method [6] to improve
the BoVW framework, namely IVFADC. In the indexing (off-
line) step in IVFADC, a reference vector rjh with d dimen-
sion is quantized with a coarse quantizer in the same way
as the BoVW framework. We refer to the codebook used in
coarse quantization as the CQ codebook. This is the same as
what is referred to as visual words or a visual codebook in the
context of BoVW-based image retrieval or recognition.

In the indexing step, a reference vector rjh is first quan-
tized into câ using the CQ codebook C with k′ centroids
c1, · · · , ck′ ∈ Rd, where

â = arg min
1≤a≤k′

||rjh − ca||2. (3)
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Fig. 2: Framework of the proposed image retrieval system.

Subsequently, the residual vector r̄jh from the corresponding
centroid câ is calculated as r̄jh = rjh−câ. Then, the residual
vector r̄jh is decomposed into u subvectors r̄1jh, · · · , r̄ujh ∈
Rd∗

, where d∗ = d/u. Subsequently, these subvectors are
quantized separately using u codebooks P1, · · · , Pu. This
is referred to as product quantization. In this paper, a code-
book used in product quantization is referred to as a PQ code-
book. We assume that each PQ codebook Pl has k∗ centroids
pl1, · · · plk∗ ∈ Rd∗

. Using the l-th PQ codebook, the l-th sub-
vector r̄ljh is quantized into plbl , where

bl = arg min
1≤b≤k∗

||r̄ljh − plb||2. (4)

Finally, the short code (b1, · · · , bu) is stored in the â-th list of
the inverted index with the identifier j of the reference image.
The size of the short code is represented by u log2 k

∗ bits.
In addition, local features are stored independently of

the inverted index for reranking. This is needed because in
reranking each local feature of a query image should be com-
pared with the features of each of the images in a shortlist. In
IVFADC, residual vectors are encoded by product quantiza-
tion, while original SIFT vectors are encoded here, which is
referred to as ADC in [6]. Note that we can choose an arbi-
trary number u′ of vector decomposition independent of u.

4.3. Index search

In the search step in IVFADC, the T nearest features NT (qi)
of qi are obtained from the inverted index. A query vector
qi is first quantized using the CQ codebook, and the resid-
ual vector q̄i from the corresponding centroid is calculated in
the same manner as the indexing. Subsequently, the distance
between the residual vector q̄i and short codes (b1, · · · , bu)
in the corresponding list in the inverted index are calculated.



These distances correspond to the approximate distances be-
tween the query vector qi and the reference vectors rjh:

d(qi, rjh) = d(q̄i, r̄jh) ≈

√√√√ u∑
l=1

||q̄li − plbl ||2. (5)

This distance calculation is performed efficiently using a pre-
computed lookup table [6]. Finally, the T nearest features
NT (qi) of qi are obtained by sorting according to the dis-
tances. The distances obtained in this process are reused in
the reranking step described in Section 4.5.

4.4. Voting scores

Once the T nearest neighbors NT (qi) of qi are obtained with
the index search, the scores are voted for the reference images
associated with NT (qi). We adopt density ratio-based scor-
ing [13], which has been shown to be superior to IDF scoring.
The voting score sij from query feature qi to reference image
Rj is calculated using the k nearest neighbors of qi as

sij = log(
λ

1− λ

|NT (qi)j |/|Rj |
|NT (qi)|/|RDB|

+ 1), (6)

where |NT (qi)| = T , and |NT (qi)j | is the number of features
in NT (qi) associated with Rj , and λ denotes an adjustable
parameter that controls the strength of the prior distribution
of p(qi|Rj). For each qi, the voting score sij is assigned to
each Rj . The resulting

∑
i sij corresponds to the similarity

measure between Q and Rj , and a voting result is obtained.

4.5. Nongeometric reranking with density ratio scoring

For each of the top M images in a voting result (shortlist),
new scores are calculated to refine the first result. First, ap-
proximate distances are calculated in the manner described in
Section 4.3, and the distance d̂i from qi to its nearest feature
r̂i in a target image in the shortlist is obtained.

The distance lists from the index search are used to re-
ject unreliable matches: given a distance list di1, · · · , diT for
query feature qi, the tentative match associated with qi is re-
jected if d̂i > diT ′ . In this paper, as the proposed criterion is
very reliable, geometric verification is skipped and reranking
is performed using the non-rejected tentative matches. Instead
of simply counting the number of inliers, sum of modified
version of scores in Eq. (6) is used as the new score:

si = log(
λ

1− λ

1/|R|
t̂/|RDB|

+ 1), (7)

where the same density estimation is performed as Eq. (1).

5. EXPERIMENTAL EVALUATION

5.1. Evaluation of matching accuracy

The proposed rank criterion described in Section 3 is com-
pared with the conventional ratio criterion in terms of the
matching accuracy of local features. The Graffiti dataset [2] is
used for the evaluation. The dataset consists of 8 scenes and
each of the scenes contains 6 images with a gradual geomet-
ric or photometric transformation such as viewpoint changes,
image blur, JPEG compression, or illumination. We use the
first and second images from each of the scenes for the eval-
uation. In order to obtain distance lists, 10,000 images are
used out of the MIRFLICKR-1M dataset1. Approximate dis-
tance lists are obtained with the approximate nearest neighbor
search method described in Section 4.3. The ground truth ho-
mographies between the first image and the others in each
scene are also provided, tentative matches with projection er-
ror greater than 5.0 pixels are considered as outliers.

Figure 3 shows 1−precision vs. recall curves for the pro-
posed rank criterion and the conventional ratio criterion. Both
exact distances and approximate distances are used in match-
ing: the prefixes A8 and A16 indicate that approximate dis-
tances are calculated using 8-byte (u′ = 8) and 16-bytes
(u′ = 16) short codes, respectively. For the proposed method,
the threshold T ′ ranges from 1 to 10, and for the conventional
method, the threshold α ranges from 0.8 to 1.0. It is shown
that the proposed criterion outperforms the conventional cri-
terion even if approximate distances are used for the proposed
criterion and exact distances are used for the conventional cri-
terion. It can also be said that, with the proposed criterion, the
degradation of the performance caused by approximate dis-
tances is also alleviated owing to the use of an independent,
large dataset. The memory requirement is the same for both
the proposed method and the conventional method; A8, A16,
and Exact requires 8, 16, and 128 bytes per descriptor, re-
spectively. Computational costs are explored in the following
section.

5.2. Evaluation of reranking methods

In this section, the proposed framework is evaluated in terms
of image retrieval accuracy using the University of Kentucky
recognition benchmark dataset2 provided by the authors of
[20]. The dataset includes 2,550 different objects or scenes.
Each of these objects is represented by four images taken
from four different angles, giving a total of 10,200 images.
These images are used as both reference and query images.
Mean average precision (MAP), the area under the precision-
recall curve, is used as an indicator of performance [20, 5].
Standard parameter settings [5, 6, 12] are used in our exper-
iments. The size k′ of the visual codebook is set to 20K. In
indexing, reference features are divided into 8 16-dimensional

1http://press.liacs.nl/mirflickr/
2http://www.vis.uky.edu/˜stewe/ukbench/
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Fig. 3: 1−precision vs. recall curves for the ratio criterion and the proposed criterion. Both exact distance and approximate distance are used
in matching. From 3,000 to 5,000 features are extracted with default parameters.

subvectors (u = 8), and encoded by a product quantizer with
256 centroids (k∗ = 256), resulting in 8 × 8 bit code. For
the proposed method, we set T = 24 and T ′ = 10. These
parameters were not particulary sensitive to the performance
(greater is better) in preliminary experiments.

Figure 4 shows accuracy as a function of λ before and
after reranking. The MAP score of the baseline system (be-
fore reranking) is 0.882. The scores of the top 20 images
in a shortlist are refined with the proposed method for Prop
using exact and approximate distances. We can see that the
accuracy in image retrieval is also improved by the proposed
method without geometric information. It is also shown that
the accuracy of A16 is comparable with Exact, which is con-
sistent with the results in Section 5.1.

Table 1 shows the processing time required for the pro-
posed method. The processing time required for A8 and A16
can be decomposed into two parts; processing time for table
construction (for each query) and distance calculation with ta-
ble lookups (for each of the images in the shortlist). Top20,
Top50, and Top100 represent the processing times required
to rerank the top 20, 50, and 100 images in the shortlist, re-
spectively. All distance calculations are optimized with SIMD
operations. In the experiment more than 3,000 features are
used. As computational cost is proportional to the square of
the number of features, if the number of features is reduced to
around 1,000, the computational cost is reduced by an order
of magnitude. Table 2 also summarizes the MAP scores of
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Fig. 4: Accuracy of the proposed framework with different distance
calculation scenarios as a function of λ.

the proposed method with the same parameter settings. We
observe: (1) there is no significant differences in accuracy be-
tween A16 and Exact while Exact requires a large computa-
tional cost (almost three times larger than A16), (2) using top
50 and 100 images does not improve accuracy greatly, while
causing a linear increase in computational cost.

We also conducted reranking based on geometric verifi-
cation, where a score in a shortlist is replaced by a new score
if the number of inliers is greater than a threshold. The MAP
was degraded from 0.882 to 0.871 due to failures in homogra-
phy estimation for nonplanar or textureless objects and false



Table 1: Processing time required in the proposed system [sec].
Table Distance Top20 Top50 Top100

A8 0.027 0.058 1.193 2.942 5.857
A16 0.040 0.102 2.074 5.125 10.210

Exact - 0.291 5.810 14.525 29.050

Table 2: Comparison of different parameter settings for the proposed
method.

Top20 Top50 Top100
A8 0.890 0.891 0.890

A16 0.897 0.902 0.904
Exact 0.899 0.904 0.907

positives. Figure 5 shows examples of nonplanar or texture-
less objects in the database for which homography estima-
tion failed. The proposed method can improve accuracy even
against these queries.

6. CONCLUSIONS

In this paper, we proposed a new feature matching criterion
and nongeometric reranking method for large-scale image re-
trieval. The reuse of the information obtained in the BoVW
framework enables accurate feature matching and sophisti-
cated scoring in the reranking. In the experiments, we con-
firmed that the proposed method can improve the results even
if geometric information is not used. As a future research
topic, we are interested in the utilization of the proposed
rank criterion as a priority measure for tentative matches in
PROSAC [21].
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