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ABSTRACT

We propose a new voting strategy referred to as ratio voting to
improve bag-of-visual words-based image retrieval. It limits
the number of votes in proportion to the number of features
in visual words, while conventional schemes use (estimated)
distances or rank information as a filtering criterion. Ratio
voting realizes adaptive thresholding that captures the density
of feature vectors. In experiments, we adopt two different dis-
tance estimation methods in the post-filtering step and show
that ratio voting achieves a considerable improvement in spite
of its simplicity in both cases. Furthermore, we perform ex-
haustive experiments in combining ratio voting with multiple
assignment approaches and show that choosing a multiple as-
signment approach also has a remarkable impact on accuracy.

Index Terms— Specific object recognition, visual words,
hamming embedding, product quantization, inverted index

1. INTRODUCTION

With the advancement of both stable interest region de-
tectors [1] and robust and distinctive descriptors [2], local
feature-based image or object retrieval has attracted a great
deal of attention. Particularly, it has become applicable to
large-scale databases with a bag-of-visual words (BoVW)
framework [3]. Figure 1 illustrates a standard framework of
BoVW-based image retrieval system. In the BoVW frame-
work, local feature points or regions are detected from an
image, and feature vectors are extracted from them. These
feature vectors are quantized into visual words (VWs) using a
visual codebook (visual vocabulary), resulting in a histogram
representation of VWs. Image similarity is measured by L1

or L2 distance between the normalized histograms. As VW
histograms are generally very sparse, an inverted index data
structure and a voting function enables an efficient similar-
ity search. The equivalency between L2 distances and scores
obtained with the voting function is described in [4] in de-
tail. A tf-idf weighting scheme [3] is naturally integrated with
the voting function. Finally, geometric verification [5] is per-
formed to refine the results obtained with the voting function.

Although the BoVW framework realizes efficient re-
trieval, there is some room for improvement in terms of accu-
racy. One significant drawback of VW-based matching is that
two features are matched if and only if they are assigned to the
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Fig. 1. Standard framework of bag-of-visual words-based im-
age retrieval system.

same VW [4]. There are two major expansions of voting func-
tion to alleviate this problem: post-filtering approaches [4, 6]
and multiple assignment approaches [7, 4]. In post-filtering
approaches, after VW-based matching, unreliable matches are
filtered out according to (estimated) distances between query
and reference features. In multiple assignment approaches,
query features vote not only for reference features in the near-
est VW but also for reference features in the k-nearest VWs.

To date, local feature detectors/descriptors have been in-
vestigated quite well in the literature [8, 1, 2, 9]. Although
a choice of voting strategies has also considerable impact on
the accuracy of search results as shown in Section 4.2, only
a few studies have focused on voting processes [4, 7]. In this
paper, focusing on voting processes, we propose a new vot-
ing strategy referred to as ratio voting; it limits the number of
votes in proportion to the number of features in VWs, while
conventional schemes use (estimated) distances or rank infor-
mation as a filtering criterion. Ratio voting realizes adaptive
thresholding that captures the density of feature vectors. In
experiments, we show that ratio voting achieves a consider-
able improvement in spite of its simplicity. Furthermore, we
perform exhaustive experiments wherein ratio voting is com-
bined with multiple assignment approaches and show that the
choice of a multiple assignment approach also has a remark-
able impact on accuracy.



2. IMPROVING VW-BASED IMAGE RETRIEVAL

There are two major approaches used to improve the perfor-
mance of VW-based image retrieval in voting: post-filtering
approaches and multiple assignment approaches. Both ap-
proaches are reviewed in this section.

2.1. Post-filtering approaches

As the naive BoVW framework suffers from many false
matches of local features, post-filtering approaches are pro-
posed to suppress unreliable feature matches [4]. In this
section, an overview of post-filtering approaches to improve
naive VW-based image retrieval is presented. There are two
important parts to post-filtering approaches: distance estima-
tion and filtering criteria.

2.1.1. Distance estimation

As mentioned previously, after VW-based matching, dis-
tances between a query feature and reference features that
are assigned to the same visual word as the query feature are
estimated for post-filtering. As exact distance calculation is
undesirable in terms of computational cost and memory re-
quirement to store raw feature vectors [10], short code-based
methods are used for this purpose [4, 10]: feature vectors are
encoded into short codes and distances between feature vec-
tors are approximated by distances between the short codes.
In this paper, we adopt a product quantization (PQ)-based
method [10]. It has been shown to outperform other short
codes like spectral hashing (SH) [11] or a transform coding-
based method [12] in terms of the trade-off between code
length and accuracy in approximate nearest neighbor search.
In the PQ method, a reference feature vector is decomposed
into low-dimensional subvectors. Subsequently, these sub-
vectors are quantized separately into a short code, which is
composed of corresponding centroid indices. The distance
between a query vector and a reference vector is approxi-
mated by the distance between a query vector and the short
code of a reference vector. Distance calculation is efficiently
performed with a lookup table. This distance is used to filter
out unreliable feature matches according to filtering criteria
introduced in Section 2.1.2, which considerably improves the
precision of matching with only slight degradation of recall.

2.1.2. Filtering criteria

Based on the estimated distances described above, unreliable
feature matches are filtered out. There is room for discussion
on how to utilize the distances. To date, several criteria are
used for filtering.

◦ Distance criterion: The most straightforward way is to filter
out reference features with larger (approximated) dis-
tances than the predefined threshold [4, 6].
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Fig. 2. For each VW, the number of feature vectors in the VW
and the mean squared distance between the feature vectors
and its centroid is plotted. A visual codebook with the size
of 20K is created from 4M SIFT feature vectors introduced in
Section 4.1. Here we plot randomly selected 2K VWs out of
20K VWs.

◦ Rank criterion: The alternative is to use the k-nearest
neighbor features in voting and to filter out the oth-
ers [10]. In this case, for each feature vector in a query
image, reference features are sorted according to dis-
tances between the query feature and the reference fea-
tures in ascending order, and corresponding top-k ref-
erence features are used in voting.

2.2. Multiple assignment approaches

While post-filtering approaches try to improve the precision
of feature matches with only slight degradation of recall, mul-
tiple assignment approaches improve recall at the cost of the
precision of feature matches. The basic idea here is, at a
search step, to assign a query feature not only to the near-
est VW but to the several nearest VWs. This technique alle-
viates the problem of quantization error; sometimes, similar
features are assigned to different VWs. In [7], each query
feature is assigned to the fixed number of the nearest VWs
and the influence of a matched feature to image similarity is
weighted according to the distance between the query feature
and the assigned VWs. In [4], the distance d0 to the nearest
VW from a query feature is used to determine the number of
multiple assignments, where the query feature is assigned to
the VWs such that the distance to the VWs is smaller than
αd0 (α = 1.2 in [4]). This approach adaptively changes the
number of assigned VWs according to ambiguity of the fea-
ture. In this paper, we refer the former approach as fixed num-
ber multiple assignment (Fixed MA) and the latter as adaptive
number multiple assignment (Adaptive MA). As post-filtering
approaches and multiple assignment approaches are comple-
mentary, it is desirable to use multiple assignment in conjunc-
tion with post-filtering.
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Fig. 3. Querying range. The shade of a color represents the
density of feature vectors. Red circles show the maximum
range of features that can be matched with the query feature
depending on the two criteria. In the case of (a), the range is
explicitly defined, while, in (b), the range is implicitly deter-
mined by the distance between the query feature and the k-th
nearest reference feature.

3. PROPOSED VOTING STRATEGY

In this section, we describe the problem of unfairness among
VWs caused by conventional post-filtering criteria that were
described in Section 2.1.2. Accordingly, a new post-filtering
criterion is proposed to alleviate this problem. Finally, two
strategies are explained wherein the proposed filtering crite-
rion is combined with the multiple assignment approaches.

3.1. Problem in conventional criteria

Although it is well-known that the frequency of VWs satis-
fies Zipf’s law [13], the relationship between the frequency
and the size of a visual word cell has not been comprehen-
sively investigated. Figure 2 shows the relationship between
the frequency of VWs and the mean squared distance between
feature vectors in a VW and its centroid. The mean squared
distance roughly corresponds to the size of the Voronoi cell of
a VW in feature space. It can be seen that VWs with a larger
number of features tend to have relatively small Voronoi cell
sizes. In other words, the density of feature vectors is quite
different from one VW to another, which should be consid-
ered when designing post-filtering approaches.

Figure 3 illustrates the problem associated with conven-
tional criteria in terms of feature density. In the case of the
criterion based on raw distance (Figure 3 (a)), query features
in frequent VWs (e.g., feature A) cause a large number of
votes, while query features in infrequent VWs (e.g., feature
B) cause a small number of votes. In the case of the criterion
based on rank (Figure 3 (b)), despite the divergence in feature
density, the number of votes is the same in all VWs. If we
convert the rank criterion into distance, a query feature in fre-
quent (e.g., feature A) VWs can be matched only with those
features that are very near to the query feature, while a query
feature in infrequent VWs (e.g., feature B) can be matched
with features far from the query feature. This is in contrast to
the distance criterion.

To summarize, for both criteria, some VWs have a sig-
nificant impact in voting and others have little impact. This
unfairness among VWs degrades final accuracy after voting
and the criteria do not make the best of the post-filtering ap-
proach.

3.2. New filtering criterion

To alleviate the unfairness among VWs, we propose a new fil-
tering criterion that restricts the number of votes in proportion
to the number of features in a VW.

◦ Ratio criterion: Instead of using top-k reference features,
top-p proportion of reference features in a correspond-
ing VW are used in voting.

This is a natural extension of VW-based matching. Accord-
ing to the ratio criterion, filtering is always performed in all
VWs if the threshold p is smaller than 1.0. Where p = 1.0,
retrieval results become identical to those obtained by naive
VW-based matching. With the distance and rank criterion,
there is a threshold where filtering is not performed in some
VWs and in the other VWs filtering is performed, which is
an extreme example of unfairness. The ratio criterion can be
regarded as a modified version of the rank criterion whereby
the threshold k is adaptively changed according to the number
of features in the same VW as a query feature: let Nv denote
the number of features assigned to v-th VW, k = p×Nv. As
the number of features in each VW is known before query-
ing, sorting by distances can be performed efficiently with a
fixed-size heap.

3.3. Combination with multiple assignment approaches

There are several options in combining the ratio criterion and
multiple assignment approaches. In this paper, we explore
following two strategies.

◦ Strategy A: apply post-filtering independently in each of
the multiply assigned VWs.

◦ Strategy B: apply post-filtering after merging all features in
multiply assigned VWs.

Figure 4 depicts the difference between strategy A and strat-
egy B, assuming that a query feature is assigned to two VWs,
X including 400 features and Y including 100 features, and
that the threshold for ratio voting is set to 0.1. In the case
of strategy A (Figure 4 (b)), the reference features in VW X
and VW Y are sorted independently according to distances
from the query feature. Subsequently, the top 10% of fea-
tures in each VW, 40 features from VW X and 10 features
from VW Y, are used for voting. In the case of strategy B
(Figure 4 (c)), the reference features in VWs X and Y are put
together and sorted according to distances from the query fea-
ture. Thereafter, the top 10% of features (50 features) in VW
X or Y are used for voting. Note that strategy B is applicable
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Fig. 4. Two strategies in combination with multiple as-
signment. (a) Assuming a query feature is assigned to
two VWs X and Y: VW X includes 400 reference fea-
tures and VW Y includes 100 reference features. (b) Strat-
egy A: 400×0.1=40 features are voted from VW X and
100×0.1=10 features are voted from VW Y, respectively. (c)
Strategy B: (400+100)×0.1=50 features are voted from VW
X and Y.

(reasonable) only in the case where estimated distances are
comparable among different VWs.

4. EXPERIMENTAL EVALUATION

In this section, different voting strategies are compared using
a publicly available dataset. First of all, the distance, rank,
and ratio criterion are compared in terms of image retrieval
accuracy. Second, rank and ratio criterion are evaluated in
terms of the unfairness discussed in Section 3.1. Third, the
ratio voting is combined with four types of multiple assign-
ment approaches for further improvement. A weighted voting
technique is also introduced.

4.1. Experimental setup

Experiments are performed on a publicly available dataset
provided by [14]: the University of Kentucky recognition
benchmark dataset1. The dataset includes 2,550 different
objects or scenes. Each of these objects is represented by
four images taken from four different angles, giving a total
of 10,200 images. These images are used as both reference
and query images. Mean average precision (MAP) [14, 4] is
used as an indicator of performance. As SIFT feature vectors
extracted from the test dataset and also other datasets (e.g.,
“cd training dataset”) are available2, these feature vectors are
used in the experiments for reproducibility. We use the first
4M feature vectors from the “cd training dataset” to create
a visual codebook and codebooks for product quantization.
Note that these features are extracted from completely differ-
ent images from the 10,200 test images. Standard parameter
settings [4, 10] are used in our experiments. The size of the
visual codebook is set to 20K. For the PQ method, reference

1http://www.vis.uky.edu/˜stewe/ukbench/
2http://vis.uky.edu/˜stewe/ukbench/data/

features are divided into 8 16-dimensional subvectors, and en-
coded by a product quantizer with 256 centroids, resulting in
8× 8 bit codes3.

4.2. Impact of post-filtering approaches

In this section, the impact of different post-filtering ap-
proaches is explored. Figure 5 shows image retrieval accu-
racy (MAP) for different thresholds. Using distances between
a query feature and reference features estimated by the PQ
method, filtering is performed based on (a) distance, (b) rank,
and (c) ratio criterion. Figure 5 (b) corresponds to the state-
of-the-art scheme described in [10]. Post-filtering based on
Euclidean distance does not work well due to diversity in the
size of each VW cell. A larger threshold cannot filter out
any matches in most of the VWs with small Voronoi cells,
while a lower threshold filters out few matches in VWs with
large Voronoi cells. The rank criterion achieves better perfor-
mance over the distance criterion by alleviating unfairness.
This is because the distance from the feature vector to its k-
th nearest neighbor can capture the local scale in a feature
space [15]. However, it is not the best approach because in
the case of VW-based image retrieval, the number of features
in each VW is also quite different. The ratio criterion achieves
the best performance by automatically adjusting the threshold
according to the number of features in the VWs. Mean pro-
cessing time required in voting increases from 8 [msec] to 14
[msec] when we adopt ratio voting. This overhead is negli-
gible compared with the processing time required for feature
detection and extraction. We also tried a Hamming embed-
ding method [4], where feature vectors are embedded into the
Hamming space and distances between them are estimated
by the Hamming distance. It is found that the best perfor-
mance (a MAP score of 0.835) obtained by using the rank
criterion with th = 7 is outperformed by the best performance
(a MAP score of 0.846) obtained by using the ratio criterion
with th = 0.036.

4.3. Comparison in terms of feature repeatability

In this section, the unfairness among VWs is explored for the
rank and ratio criteria. We introduce a new measurement,
called a repeatability score S, defined by the average number
of ground truth images that get at least one vote from each
query feature. The score reflects the repeatability of query
features in voting. Let Q denote a set of query features from
all query images, NN(q) denote a set of reference image iden-
tifiers voted from query feature q, and IGT(q) denote a set of
ground truth image identifiers corresponding to q; the repeata-
bility score S is defined by

S =
1

|Q|
∑
q∈Q

∑
i∈IGT(q)

R(i,NN(q)), (1)

3This corresponds to the notation m = 8 and k∗ = 256 in [10].
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(a) Distance as a threshold:
The best performance (MAP = 0.759) is

achieved with th = 0.58.
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(c) Ratio as a threshold:
The best performance (MAP = 0.845) is

achieved with th = 0.03.

Fig. 5. MAP with various thresholds. Distances are estimated via the PQ method and post-filtering is performed based on (a)
Distance, (b) Rank, and (c) Ratio criterion. The best MAP and corresponding threshold is also shown. Where th = ∞, all
schemes become identical to the pure VW-based method and the MAP score declines to 0.7455.

where

R(i,NN(q)) =

{
1 if i ∈ NN(q)

0 else.
(2)

The set of image identifiers NN(q) is determined by a filtering
criterion and a threshold. As there are four ground truth im-
ages in the dataset, the inequality 0 ≤ S ≤ 4 is satisfied. The
repeatability score S monotonically increases as the threshold
is increased. If we set the threshold to 0, S becomes identical
to 0. Note that, even if we set the threshold to ∞, S does
not become identical (or even close) to 4. This is because, in
the VW-based framework, each query feature can be matched
with only reference features in the same VW.

To see the differences among VWs with different frequen-
cies, all VWs are classified into four groups: the top 25%
most frequent VWs, the next 25% most frequent VWs and so
on in descending order of frequency. The repeatability score
S is calculated independently for features in the four groups.
Figure 6 shows the repeatability scores of four VW groups,
where distances are estimated by the PQ method and both the
rank and ratio criteria are adopted. It is shown that, in the case
of the rank criterion, the repeatability score is quite different
depending on the VWs. Query features in frequent VWs are
matched less with correct reference features than features in
infrequent VWs as discussed in Section 3.1. In contrast, in
the case of the ratio criterion, the unfairness is alleviated at
all thresholds; features in different VWs have similar repeata-
bility scores. This indicates that all features can equally con-
tribute to scores in feature-level matching, resulting in con-
siderable improvement in image search accuracy compared
to the other criterion.

4.4. Impact of multiple assignment approaches

In this section, we evaluate combinations of the ratio criterion
and multiple assignment approaches. The strategies A and B
described in Section 3.3 are combined with both Fixed MA

and Adaptive MA. Figure 7 shows the impact of the choice
of multiple assignment approaches. We can see that the com-
bination of Adaptive MA and strategy B is the best choice
for ratio voting. In ratio voting, the weighting method [4]
is also applicable according to the relative rank of reference
features sorted by distances. A weight exp(−(t/N)2/σ2) is
assigned to the t-th nearest reference feature in voting, where
N denotes the number of features in the same VW as a query
feature and σ denotes an adjustable parameter. Figure 7 also
shows the effectiveness of the weighting method that is com-
bined with Adaptive MA + B. We achieved a MAP score of
0.891 and Kentucky Score (KS)4 of 3.47 where th ≥ 0.01
and σ = 0.05, while a MAP score of 0.878 and KS of 3.42
were reported in [4]. We also confirmed the scalability of our
system by adding the MIRFLICKR-1M dataset5 as a distrac-
tor set, which includes 1 million images. The system based
on the ratio criterion achieved a MAP score of 0.757 with
th = 0.005, while the system based on the rank criterion
achieved a MAP score of 0.752 with th = 10, where mul-
tiple assignment and weighting were not adopted for a fair
comparison. Finally, we implemented a server-client system
for mobile phones, where the mobile phone sends the cap-
tured image to the server and the server returns search results
with geometric verification [5]. Figure 8 shows an example
of the recognition results to a query. Our system accurately
recognizes and localizes multiple images.

5. CONCLUSIONS

In this paper, we proposed a new voting strategy referred to
as ratio voting to improve bag-of-visual words-based image
retrieval. It limits the number of votes in proportion to the
number of features in VWs, while conventional schemes use

4KS is the average number of relevant images ranked in top four positions
when search results are sorted by scores [14].

5http://press.liacs.nl/mirflickr/
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Fig. 6. Repeatability scores for four VW groups.

(estimated) distances or rank information as a filtering crite-
rion. Ratio voting realizes adaptive thresholding that captures
the density of feature vectors. In experiments, we showed that
ratio voting achieves a considerable improvement in spite of
its simplicity.
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