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ABSTRACT

This paper proposes a fast and robust content-based copy de-
tection scheme. Our proposal consists of a new compact fea-
ture, efficient keyframe selection and adaptive mask-based
feature comparison. Firstly, a block-level luminance centroid
is binarized into a 32-bit quadrant feature for fast and robust
feature comparison. Subsequently, a new keyframe selec-
tion method is adopted to enhance pairwise independence be-
tween unrelated video segments in addition to choosing stable
keyframes. Finally, a block-level mask-based feature com-
parison method is introduced to compare only stable features.
Experimental results show our scheme improves recall by 0.1
at the same precision 0.9 and the processing speed in feature
comparison of the proposed scheme is about twice as fast as
that of conventional schemes.

Index Terms— video fingerprinting, content-based copy
detection, near-duplicate detection, luminance centroid

1. INTRODUCTION

With the advancement of both computer and Internet technol-
ogy, digital multimedia content is being used more widely in
many applications. Video sharing services, one such applica-
tion, have become very popular and have attracted a great deal
of attention. One big problem with these video sharing ser-
vices, however, is copyright infringement. As many people
upload infringing video clips to video sharing sites without
proper authorization, an automated means of detecting such
clips is needed. In recent years, Content-Based Copy Detec-
tion (CBCD) technology, more generally referred to as digital
fingerprinting, has attracted considerable research attention
for this purpose. In an automated inspection system based on
CBCD, content holders register copyrighted content with the
operators of video sharing sites in advance. The operators ex-
tract features from the copyrighted content and store them in a
database. When a user uploads a video clip, features are also
extracted from the uploaded video clip in the same way and
the database is searched for a match. If there is matching con-
tent in the database, the uploaded content is considered to be
a copy of copyrighted content and filtered out or some other
action is taken according to the content holder’s intentions.
Considering a CBCD system in practical terms, robustness

and computational efficiency are vital because many video
clips are uploaded to video sharing sites every day and these
uploaded video clips are subject to various kinds of transfor-
mations such as compression, contrast changes, etc. In this
paper, we focus on improving detection accuracy and speed
in CBCD for efficient copyright protection.

2. RELATED WORKS

To date, many algorithms have been developed in the CBCD
area. CBCD schemes can be roughly classified into two cat-
egories: one based on global features [1–4] and the other on
local features [5]. Although one state-of-the-art scheme based
on local features has achieved high accuracy and an efficient
database search [5] in terms of content-based image retrieval,
local feature detection and description [6] processes remain
highly time-consuming (in the order of a few seconds per
frame on an ordinary PC). In this paper, therefore, we focus
on schemes based on global features for practical use. An
ordinal measure (OM) [1,2], one of the major global descrip-
tors, has proven robust against changes in resolution or illu-
mination. Recently, it has been revealed that gradient based
features [3,4] achieve good robustness and pairwise indepen-
dence. Among them, the block-wise orientation of luminance
centroid (OLC) is shown to have optimum performance [4].

3. PROPOSED APPROACH

The most significant problem of the aforementioned conven-
tional schemes based on global features is the fact that the
detection accuracy deteriorates when a copied video clip has
been distorted, particularly by geometric transformations. In
this paper, we overcome this problem via the following three
approaches:

◦ Binarizing frame features into 32-bit signatures and com-
paring them in terms of Hamming distance, which pre-
vents the disparity between a copied video clip and its
original video segment from becoming excessive due to
distortion.

◦ Selecting stable and distinctive keyframes in order to ac-
complish both robustness and pairwise independence.

◦ Filtering out the features that are sensitive to distortion,
which improves accuracy, especially in recall.
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Fig. 1: Framework of the proposed scheme.

As shown in Fig. 1, the proposed scheme is briefly summa-
rized as follows. 1) The query video is resampled at a fixed
frame rate to deal with frame rate changes. 2) Robust bi-
nary features based on block-wise luminance centroid are ex-
tracted from every frame of the resampled query video. 3)
Stable and distinctive keyframes are selected. 4) Reference
indices are sequentially searched using a block-level mask,
which enables only distinctive blocks to be compared. 5)
Non-maxima suppression and thresholding are performed to
determine whether the query content is infringing or not. If
so, the offset of the copied segment in reference videos is es-
timated. In the remainder of this section, feature extraction,
keyframe selection and sequential search procedures are all
detailed.

3.1. Quadrant of the luminance centroid feature

We propose a binary feature based on the quadrant represen-
tation of the luminance centroid (QLC) for fast and robust
retrieval. Fig. 2 shows the procedure of the QLC feature.
First, each frame is divided into 4x4 blocks Bi (1 ≤ i ≤ 16),
for each of which the coordinate of the luminance centroid
(xc

i , y
c
i ) is then calculated:

xc
i =

∑
(x,y)∈Bi

x · I(x, y)∑
(x,y)∈Bi

I(x, y)
, yc

i =

∑
(x,y)∈Bi

y · I(x, y)∑
(x,y)∈Bi

I(x, y)
,

(1)
where I(x, y) means the luminance of an image at coordinate
(x, y). Subsequently, a 2-bit signature is extracted by com-
paring the coordinates of the luminance centroid (xc

i , y
c
i ) and

the center of the block (xm
i , ym

i ). This extreme quantization
prevents features from being severely changed by distortion.
Integrating these signatures from all blocks, the QLC feature
f is created:

f = (x1, y1, · · · , x16, y16), (2)

xi =

{
1 if xc

i ≥ xm
i

0 else
, yi =

{
1 if yc

i ≥ ym
i

0 else
. (3)

This quadrant representation and the mask-based feature
comparison explained in section 3.3 resolve the drawbacks
of the OLC feature illustrated in Fig. 3. One drawback is the
fact that features θ and π − θ are confusing (on the left in
Fig. 3) because OLC represents the orientation of luminance
centroid by arcsin. This restriction is to enable OLC features
to be compared in Euclid space, while the QLC feature is
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Fig. 2: Feature extraction in the proposed scheme.
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Fig. 3: Simple illustration of OLC drawbacks.

compared in the Hamming space and can distinguish the cen-
troids illustrated on the left in Fig. 3. The other drawback is
the fact that the OLC feature would change significantly by
distortion, resulting in a significant performance degradation
when the luminance centroid is located near the center of
the block, e.g., θ changes from π/2 to −π/2 (on the right in
Fig. 3). On the other hand, the QLC feature do not change
significantly due to binary representation. This QLC fea-
ture is a very compact signature and requires only 32 bits
per frame, while OM [1] needs 45 bits and OLC 128 bits.
If properly encoded OM is applied, the bit amount can be
reduced to ⌈log2(9!)⌉ = 19 bits. However, decoding compu-
tation is additionally required and the resultant search speed
is degraded.

3.2. Stable and distinctive keyframe selection

Let Q = (q1, · · · ,qN ) denote a feature set extracted from
a query video clip where N is the number of frames in the
query video clip after resampling. Because Q includes re-
dundant and noisy frames, M keyframes are selected and
only keyframes are compared in a sequential search for a
stable and distinctive feature comparison. A keyframe set
K = (k1, · · · , kM ) is selected by maximizing the following
expression:

maximize(A(K) − αB(K)), (4)

A(K) =
∑M−1

j=1 ham(qkj ,qk(j+1)), (5)

B(K) =
∑M

j=1 max(ham(q(kj)−1,qkj ), ham(qkj ,q(kj)+1)),
(6)

where ham(f1, f2) is the Hamming distance between features
f1 and f2, which is defined as:

ham(f1, f2) = bitcount(f1 ⊕ f2). (7)
bitcount(·) counts the number of ’1’ bit, which is efficiently
calculated using a lookup table for every 16 bits. This op-
timizing problem can be quickly solved by dynamic pro-
gramming. The term B(K) represents the distance between
keyframes and their neighboring frames. By minimizing this,
the keyframes become stable against the time lag between the
copied video clip and the original video. This has an effect
similar to the keyframe selection method described in [7],
where frames are divided into sub-groups and keyframes are
selected for each sub-group for which the distances to any



of the other frames in the sub-group are minimized. Fur-
thermore, in the proposed method, the term A(K) imposes
that consecutive keyframes should be different from each
other, resulting in selecting diverse keyframes and boosting
pairwise independence in the feature comparison.

3.3. Mask-based feature comparison

In this section, we introduce a mask-based feature comparison
method, whereby a comparison of only stable features (bits)
is attempted instead of using the ordinary Hamming distance.
The mask m is created from the coordinates of the luminance
centroids:

m = (a∗
1, b

∗
1, · · · , a∗

16, b
∗
16), (8)

a∗
i =

{
0 if |xc

i − xm
i | ≤ βσx

1 else
, (9)

b∗i =

{
0 if |yc

i − ym
i | ≤ βσy

1 else
, (10)

where β is the adjustable parameter determining the mask
strength and σx (σy) is the standard deviation of xc − xm

(yc −ym), which is obtained from video clips that differ from
reference videos. Using mask m, the modified Hamming dis-
tance between feature f1 and f2 is defined as

ham∗(f1, f2,m) = bitcount((f1 ⊕ f)2 ∧ m), (11)
where ∧ is an AND operator. In the proposed scheme,
the mask is created from the query feature set Q, which
means no additional information is stored in the database
concerning the mask-based feature comparison. Let Rt =
(rt+1, · · · , rt+N ) denote a reference feature set at offset t
and M = (m1, · · · ,mN ) denote a mask set created from the
query feature set Q. Subsequently, the distance between Q
and Rt is defined as the sum of the modified Hamming dis-
tances over the keyframes with normalization by the number
of bits ’1’ in M:

dist(Q,Rt,M,K) =

∑
j∈K ham∗(qj , rj+t,mj)∑

j∈K bitcount(mj)
. (12)

Here we simply describe dist(Q,Rt,M,K) as d(t). After
calculating d(t) over the reference index, non-maxima sup-
pression with window size w and thresholding with threshold
th is performed for the final results. All offsets t̂ that satisfy
the following expression are regarded as the beginning points
of the copied segment:

d(t̂) ≤ min(d(s), th) (t̂ − w ≤ s ≤ t̂ + w). (13)

4. EXPERIMENTAL RESULTS

We conducted experiments to evaluate the proposed scheme
in terms of robustness and computational cost. The experi-
mental environment is described below:

◦ Testbed: the following experiments were tested on a ma-
chine with a Core 2 Quad 3GHz CPU and 8GB main
memory using Windows XP. All experiments were per-
formed with a single thread.

◦ Reference: 200 hours of video (720x480, 29.97fps) from
various movie genres were used as reference videos.
Features were pre-extracted and stored in the main
memory for sequential search.

◦ Query: we created 100 queries of 60 seconds in duration,
which were randomly extracted from reference videos
and edited by particular transformations.

◦ Evaluation criteria: each scheme was evaluated in terms
of accuracy (Precision-Recall curve with different
thresholds) and computational cost (average processing
time per query). In this paper, the allowable error of
offset t̂ is set to 2 seconds.

For query generation, the following four transformations were
used:

◦ Cropping: crop each side by 20px.
◦ Contrast: enhance contrast with parameter 1.2.
◦ Rotation: rotate +3 degrees.
◦ Compression: resize to CIF and encode to DivX@256kbps.

4.1. Evaluation of the proposed scheme

In this experiment, each part of the proposed scheme was
evaluated. For this purpose, the following five schemes were
compared:

◦ OLC: OLC feature with 4x4 blocks proposed in [4].
◦ QLC: QLC feature proposed in this paper.
◦ QLC+K: QLC combined with the keyframe selection de-

scribed in section 3.2.
◦ QLC+K2: QLC combined with the keyframe selection de-

scribed in [7].
◦ QLC+K+M: QLC+K combined with the mask-based fea-

ture comparison described in section 3.3.

The parameters used in this experiment were set as: N = 120,
M = 30, α = 2.0, β = 0.2 and w = 10 (α and β were de-
termined by preliminary experiments). Fig. 4 shows the PR
curve of each scheme against each query. The common char-
acteristics independent of the query type are described in
the following. Comparing OLC and QLC, it is confirmed
that the QLC feature improves performance especially in
terms of recall. This improvement is mainly owing to the
binary feature representation detailed in section 3.1, which
prevents the QLC feature from significant change by distor-
tion. While both keyframe selection methods (QLC+K and
QLC+K2) improve performance compared with QLC, the
proposed keyframe selection method is shown to be more
efficient. It mainly contributes to precision because by se-
lecting distinctive frames as keyframes, the distance between
two different video clips increases. The mask-based feature
comparison also improves accuracy, especially in recall. This
is because by avoiding comparison of unstable bits, the dis-
tance between the copied video clip and its original video
content diminishes. It is remarkable that the full proposed
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Fig. 4: PR curve of each scheme against each query type: Cropping
(top-left), Contrast (top-right), Rotation (bottom-left) and Com-
pression (bottom-right).

Table 1: Comparison of the computational cost of each scheme
[sec/query].

Feat. Key. Mask Feat. comp. Total
OLC 0.146 - - 1.163 1.309
QLC 0.169 - - 0.284 0.453
QLC+K 0.169 0.002 - 0.284 0.455
QLC+K2 0.169 0.001 - 0.284 0.454
QLC+K+M 0.169 0.002 0.001 0.353 0.525

scheme (QLC+K+M) achieves good robustness even against
geometrical transformations (e.g., 0.96 in F-measure against
the rotation query).

Table 1 shows the computational time of each scheme.
The QLC feature also accelerates search speed, even if the
mask-based comparison is adopted because distance calcula-
tion is implemented by bitwise operation and LUT. It is also
shown that the processing overhead of the keyframe selection
and mask generation in the proposed scheme is negligible.

4.2. Comparison with conventional schemes

In this section, the proposed scheme is compared with the
conventional schemes described below:

◦ PROP: full proposed scheme.
◦ OM: ordinal intensity feature [1] with 3x3 block division.
◦ OM+K2: OM combined with keyframe selection described

in [7] for fair comparison.
◦ OLC: orientation of luminance centroid [1] with 4x4 block

division.
◦ OLC+K2: OLC combined with keyframe selection.

Fig. 5 shows the average PR curves of each scheme for four
transformations. Although keyframe selection improves the
accuracy of both the OM and OLC schemes, the proposed
scheme still outperforms conventional schemes. Comparing
PROP and OLC+K2 at the same precision of 0.9, the pro-
posed scheme achieved higher performance than OLC+K2 by
about 0.1 in recall.
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Fig. 5: Average PR curve of each scheme against four types of trans-
formations.

Table 2: Comparison of computational cost among PROP, OM,
OM+K2, OLC and OLC+K2 [sec/query].

Feat. Key. Mask Feat. comp. Total
PROP 0.169 0.002 0.001 0.353 0.525
OM 0.025 - - 0.638 0.663
OM+K2 0.025 0.001 - 0.638 0.664
OLC 0.146 - - 1.163 1.309
OLC+K2 0.146 0.001 - 1.163 1.310

Computational costs are compared in Table 2. As shown
in the table, though the proposed scheme requires additional
cost in extracting features, it achieves the fastest processing
speed. The proposed scheme is especially fast in feature com-
parison (about twice as fast as OM), which becomes critical
when searching a huge reference database.

5. CONCLUSION

In this paper, we proposed a fast and robust content-based
copy detection scheme based on the quadrant representation
of luminance centroid and adaptive mask-based feature com-
parison for the automatic detection of infringing video clips.
Experimental results show our scheme improves the recall by
0.1 at the same precision of 0.9 and the processing speed in
feature comparison of the proposed scheme is about twice as
fast as that of conventional schemes.
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