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ABSTRACT
In this paper, we propose a fast, accurate content-based video
copy detection scheme based on bag-of-global visual fea-
tures, which is characterized by (1) utilizing an efficient
DCT-sign-based feature for fast detection; (2) performing
multiple assignment in the temporal domain, in addition
to the feature and spatial domain to ensure repeatability in
segment-level matching; and (3) adopting an inverse doc-
ument frequency weighting and temporal burstiness-aware
scoring to emphasize distinctive visual words. Despite de-
tection 95 times faster than real-time, the proposed system
achieves a false negative rate of 0.2% against queries that are
altered by non-geometric transformations without any false
positives.

Index Terms— Near-duplicate detection, content-based
copy detection, inverted index, visual words

1. INTRODUCTION

As digital multimedia content, computer, and Internet tech-
nologies have become ubiquitous, digital videos have been
used extensively in many applications. Copyright infringe-
ment poses a significant issue for one of the applications —
online video-sharing services. Because many people upload
video clips to these sites without proper copyright releases,
an automated system that detects copies of copyrighted video
is needed. In recent years, content-based video copy detec-
tion (CBCD) technology has attracted considerable research
attention for this purpose. For an automated CBCD system to
be usable, it must have the following properties:

◦ Computationally efficient: The system must be sufficiently
efficient because many video clips are uploaded to
video sharing sites every day.

◦ Robustness (low false negative rate): The video may have
been subject to editing or degradation, including the ad-
dition of captions or patterns, a change of resolution,
compression, and so on. The system should detect even
these altered videos robustly.

◦ Low false alarms: A system with too many false detections
is annoying and requires ongoing operator intervention
to filter out the false alarms.

To detect video copies, there are mainly two cues: visual
and/or audio information. Although both cues are equally
useful, we focus on visual features in this paper, especially on
global visual features. Instead of trying to handle too severe
alterations such as camcording, we propose an efficient and
effective CBCD system to efficiently filter out the majority of
infringing video clips that have not been altered by geometric
transformations. The proposed system satisfies the require-
ments described above by (1) utilizing an efficient DCT-sign-
based feature for fast detection; (2) performing multiple as-
signment in the temporal domain, in addition to the feature
and spatial domain to ensure repeatability in segment-level
matching; and (3) adopting an inverse document frequency
weighting and temporal burstiness-aware scoring to empha-
size distinctive visual words (VWs), resulting in suppressing
false positives.

2. RELATED WORK

CBCD schemes based on visual cues are roughly classified
into two categories: one based on global features [1–4] and
the other on local features [5]. Although local feature-based
schemes are robust against even geometric transformations
such as camcording, local feature detection, description, and
matching processes remain highly time consuming [3]. In this
paper, therefore, we focus on global feature-based schemes
for practical use. An ordinal measure (OM) [1] is one of
the major global descriptors, which has proven robust against
changes in resolution or illumination. In [2], OM is extended
to the spatiotemporal domain to capture temporal informa-
tion. In [3,4], OM features from a video clip are summarized
into compact signatures for efficient retrieval. However, it
is difficult for the clip-based methods [3, 4] to detect partial
copies that are embedded in unrelated video clips. In [6], the
bag-of-visual words (BoVW) framework [7], which is usu-
ally used for local features, is adapted to global features, in
which multiple global features are extracted from predefined
windows in a keyframe. Multiple assignment in the feature
domain [8] is also performed to ensure repeatability of fea-
ture matching. However, multiple assignment in the feature
and spatial domain is not the optimal choice in terms of the
tradeoff between repeatability and filtering rate.



3. PROPOSED CBCD SYSTEM

In this section, we describe the proposed content-based video
copy detection scheme based on bag-of-global visual features.
The proposed scheme consists of the following steps: fea-
ture extraction, feature quantization, indexing based on an in-
verted index, and searching via the voting function. It realizes
fast detection by accelerating feature extraction and quantiza-
tion while achieving high detection accuracy and low false
alarm rate owing to multiple assignment and sophisticated
scoring of VWs.

3.1. Feature extraction and multiple assignment

Multiple assignment is powerful tool to improve repeatability
of VW-based feature matching by assigning multiple VWs
to a single feature or keyframe [6, 8]. In this paper, multi-
ple assignment is defined to assign multiple VWs to a single,
short segment, not to a keyframe. In this section, multiple
assignments in the feature, spatial, and temporal domain are
introduced. First, both reference and query video clips are
divided into short segments with fixed durations in the tem-
poral domain (0.3 sec in this paper). From each of the seg-
ments, fixed number2mt of frames are subsampled at a uni-
form interval (multiple assignment in the temporal domain).
Subsequently, these subsampled frames are divided into2ms

blocks1 (multiple assignment in the spatial domain). Finally,
feature vectors are extracted from these blocks. In this pa-
per, we adopt the DCT-sign-based feature [9] as depicted in
Figure 1; each block is resized into 8x8 pixels, and 2D-DCT
is performed. Top-v AC coefficients in the zigzag scan order
are used as a feature vector. Subsequently, they are quan-
tized into av-bit binary string by taking the sign of the AC
coefficients. The resulting binary strings of lengthv define
VWs with a size ofN = 2v. Multiple assignment in the fea-
ture domain can be performed by toggling the most unreliable
mf -bits [10]. With the multiple assignment in the feature do-
main, each feature is assigned to2mf VWs. The reliability of
each bit is defined by the absolute value of the corresponding
AC coefficient. Finally,t-th reference segment is represented
by Rt = (rt,1, · · · , rt,w, · · · , rt,W ), whereW (= 2ms) de-
notes the number of blocks andrt,w denotes a set of VWs
associated withw-th block. We also denotes-th query seg-
ment byQs = (qs,1, · · · , qs,w, · · · , qs,W ). The parameters
introduced above(mf ,ms,mt) have a considerable impact
on the performance of segment-level matching as shown in
Section 4.1.

3.2. Indexing and searching inverted index

For simplicity, we explain the indexing and search step only
when there is a single reference video clip. This limitation
is easily overcome by considering reference video identifiers

1Divied into 2x1, 2x2, 4x2, and 4x4 blocks forms = 1, 2, 3, and 4.
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Fig. 1: Feature extraction procedure.
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Fig. 2: Indexing and searching process using an inverted index struc-
ture.

or by handling many video clips as a single, long video clip.
In the indexing step, for each segment of reference video, the
segment and block identifiers(t, w) are stored in thevw -th
list of an inverted index for allvw ∈ rt,w. In the search step,
segment-level matching is efficiently performed by inverted
index lookups. Two segments are matched if and only if they
share the same VW(s) in at least one block. The function
m(Qs,Rt) judges whether a query segmentQs is matched
with a reference segmentRt:

m(Qs,Rt) =

{
1 if ∃w s.t. qs,w

∩
rt,w ̸= ∅

0 otherwise.
(1)

The indexing/searching process is summarized in Figure 2.

3.3. Offset-level integration

Segment-level matching results obtained by inverted index
lookups are integrated into offset-level results using a vot-
ing framework [6,11]. Every matched segment pair(Qs,Rt)
votes for the binB[t−s] corresponding to the offsett−s in
a 1-D Hough space. In voting, since our scheme is based
on the BoVW framework, the inverse document frequency
(IDF) weighting [7] can be applicable to emphasize distinc-
tive VWs. Though the IDF scoring has been used only for lo-
cal features, experimental results in Section 4 show that it also
works well for global features. Performing non-maxima sup-
pression and thresholding to the voting table after voting, we
obtain a set of offset hypotheses. Each hypothesis indicates
the offset between copied segments in the query and reference
clips. Each offset has segment-level matching results associ-
ated with the offset represented by a set of tuples(s, vw , w).
After sorting the tuples according to a query segment identi-
fier s, they are divided into groups to localize the copied seg-
ments. A sequence of the tuples are divided if successive two
tuples(s, vw , w) and(s′, vw ′, w′) satisfys′−s>th. Finally,
the scores of the segmented tuples are calculated by summing
up the IDF weights of VWs appearing in the tuples. Temporal
burstiness-aware (TBA) scoring [6] is also adopted, in which
individual VWs contribute to the score only once even if a
VW is shared in consecutive query and reference segments.
The beginning and ending timestamps of copied segments are
calculated from min and max ofs in the tuples.



4. EXPERIMENTAL EVALUATION

In this section, our CBCD system is evaluated using the
TRECVID 2009 dataset. We chose the 2009 dataset rather
than the most recent 2010 dataset because all queries in the
more recent dataset have both video and audio, precluding
evaluation of video-only queries. The 2009 dataset includes
838 reference videos (about 400 hours in total) and 1,407
query videos. Each query has been edited by the seven
transformations listed in Table 1, including both photomet-
ric transformations and geometric transformations. In the
framework of the TRECVID CBCD task, a CBCD system is
characterized by three key performance measures2:

◦ Detection accuracy: Normalized detection cost rate (NDCR)
measures the tradeoff between the cost of false nega-
tives and false positives, and is defined by a weighted
mean of the two errors.

◦ Localization accuracy: The accuracy of localization is
measured by the F-measure, which is the harmonic
mean of the precision and recall of the detected copy
location relative to the true video segment.

◦ Efficiency: Efficiency is evaluated by the mean processing
time per query.

The following experiments were performed on a machine
with a Core i7 970 CPU and 24 GB of main memory.

4.1. Tradeoffs between repeatability and filtering rate

First, to confirm the effectiveness of multiple assigment
in the temporal domain, we introduce two measurements
to evaluate multiple assignment:repeatability (RP ) and
1 − filteringrate (FR). RP represents the probability that
a query frame is matched with the groundtruth reference
segment. LargerRP tends to result in low false-negative
rates in detection.FR represents the rate of the number of
matched reference frames against the number of all reference
segmentsN . SmallerFR tends to result in low false-positive
rates. There is a tradeoff betweenRP andFR: a largerFR
results in a largerRP in general. Similar discussions in terms
of approximate nearest neighbor search are found in [12].

Table 1: Query transformations.
T2 Picture in picture
T3 Insertions of pattern
T4 Strong re-encoding
T5 Change in gamma
T6 Decrease in quality (combinations of 3 transfor-

mations from blur, gamma, frame dropping, con-
trast, compression, ratio, and noise)

T8 Post production (combinations of 3 transforma-
tions from crop, shift, contrast, caption, flip, in-
sertion of pattern, and picture in picture)

T10 Combinations of 5 transformations from T2-T8

2http://www-nlpir.nist.gov/projects/tv2009/
Evaluation-cbcd-v1.3.htm
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Fig. 3: The tradeoff between repeatability and filtering rate under
different multiple assignment settings. From upper left to lower
right, the tradeoff improves.

RP andFR are defined using Equation 1 as

RP = 1
S

∑S
s=1 m(Qs,Rgt(s)), (2)

FR = 1
ST

∑S
s=1

∑T
t=1 m(Qs,Rt), (3)

wheregt(s) denotes the identifier of the ground truth segment
associated withs-th query segment.

We exhaustively evaluate multiple assignments using a
subset of the reference videos and simulated queries that
have been randomly extracted from the reference videos and
altered by a random transformation chosen from contrast
change (±50%), gamma change (±50%), and strong com-
pression. Figure 3 shows the performance of the combination
of multiple assignments parameterized by(mf ,ms,mt). Ab-
breviatingmf +ms+mt tom, at most2m VWs are assigned
to a single segment in the multiple assignment process ex-
plained in Section 3.1. Because the memory requirement
increases asm increases, we set the constraintm ≤ 5 here.
It is found that multiple assignment in the temporal domain
is most effective, and multiple assignment in the feature and
spatial domain follows. This is mainly because multiple as-
signment in the feature and spatial domain always increases
the number of assigned VWs at a constant rate, while the
number of assigned VWs adaptively changes according to
scenes in the multiple assignment in the temporal domain
because repeated VWs in a segment are ignored. In noisy or
dynamic scenes, a larger number of VWs is assigned to the
segment, while multiple assignment in the temporal domain
does nothing in a static scene.

4.2. Detection accuracy

The proposed systems are evaluated in terms of detection ac-
curacy. Table 2 shows the resulting NDCR measures of the
proposed systems for different video transformations.Base1
andBase2 represent the proposed system with multiple as-
signment defined by the parameter(3, 2, 0) and(0, 2, 3), re-
spectively. These parameters are chosen to maximize repeata-
bility among parameters w/o and w/ multiple assignment in
the temporal domain. The system performing multiple as-



Table 2: NDCR scores for different systems and transformations
(lower is better).

T2 T3 T4 T5 T6 T8 T10
Base1 1.000 0.291 0.425 0.448 0.418 0.963 0.993
Base2 1.000 0.201 0.246 0.276 0.075 0.933 0.985
+IDF 1.000 0.052 0.112 0.142 0.007 0.910 0.910
+TBA 1.000 0.007 0.000 0.000 0.000 0.843 0.821

[5] 0.672 0.224 0.381 0.239 0.284 0.269 0.515
[6]-1 0.134 0.067 0.045 0.082 0.433 0.567 0.470
[6]-2 0.239 0.007 0.060 0.022 0.022 0.231 0.269

Table 3: Localization accuracy (F-measure, higher is better).
T2 T3 T4 T5 T6 T8 T10

Prop. 0.000 0.977 0.967 0.961 0.976 0.883 0.847
[5] 0.64 0.89 0.84 0.92 0.83 0.88 0.82

[6]-1 0.937 0.938 0.936 0.940 0.939 0.936 0.941
[6]-2 0.960 0.952 0.949 0.961 0.946 0.957 0.956

signment in the temporal domain (Base2 ) achieved better
NDCR value by improving the tradeoff between repeatabil-
ity and filtering rate, as discussed in Section 4.1. We can
also see that adopting IDF weighting (+IDF ) and TBA scor-
ing (+TBA) drastically improves detection accuracy. The full
proposed system (+TBA) achieves an NDCR score of 0.002
on average in transformations T3 to T6, which corresponds to
a false negative rate of 0.2% (one false negative against 536
positive examples) without any false positives.

In Table 2, the proposed system is also compared to the
system that had achieved the best performance in TRECVID’09
CBCD task [5] and one of the state-of-the-art systems [6].
[6]-1 and [6]-2 represent a system based on global fea-
tures and a system based on both local and global features
described in [6], respectively. The full proposed system out-
performs conventional systems in transformations T3 to T6.
As the other transformations include geometric alterations,
it is inherently difficult for global features to handle these
transformations. Some preprocessing, such as picture in pic-
ture detection [6] or letter box detection [3], can alleviate the
problems.

4.3. Evaluations based on other criteria

Table 3 shows the localization accuracy of our system and
the systems described in [5] (estimated from the literature)
and [6]. It is shown that our schemes have also achieved
good performance on segment localization criterion in trans-
formations T3 to T6 compared to conventional schemes, ow-
ing to the high repeatability in segment-level matching. Ta-
ble 4 shows the processing time required for each step in the
proposed system: decoding a query video clip, resizing query
frames, feature extraction and quantization, and voting. It is
shown that the most time-consuming processes are voting and
decoding. In other words, the search process is as fast as de-
coding in our system. The system requires only 0.94 seconds
to process a query video clip with a duration of 90 seconds on

Table 4: Processing time required in the proposed system [sec].
Decode Resize Feature Voting Total
0.420 0.023 0.007 0.488 0.938

average, which is about 95 times faster than real-time, owing
to fast feature extraction and quantization. The system in the
literature [5] reported a much longer processing time of over
200 seconds, which is mainly because their system is based
on local features. The system in the literature [6] requires
around 15 and 121 seconds in global feature-based system
and in local and global feature-based system, respectively.

5. CONCLUSION

In this paper, we proposed an efficient and effective CBCD
system. The proposed system achieved a false negative rate
of 0.2% against queries that were altered by non-geometric
transformations without any false positives. As the pro-
posed system is lightweight (95 times faster than real-time),
it can be efficiently combined with other systems, such as
local feature-based or audio feature-based systems, which are
complementary to global feature-based systems.
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