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Abstract: In this paper, we propose a new, effective, and unified scoring method for local feature-based image re-
trieval. The proposed scoring method is derived by solving the large-scale image retrieval problem as a classification
problem with a large number of classes. The resulting proposed score is based on the ratio of the probability density
function of an object model to that of a background model, which is efficiently calculated via nearest neighbor density
estimation. The proposed method has the following desirable properties: (1) has a sound theoretical basis, (2) is more
effective than inverse document frequency-based scoring, (3) is applicable not only to quantized descriptors but also
to raw descriptors, and (4) is easy and efficient in terms of calculation and updating. We show the effectiveness of the
proposed method empirically by applying it to a standard and improved bag-of-visual words-based framework and a
k-nearest neighbor voting framework.
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ding, product quantization, naive-bayes nearest-neighbor

1. Introduction

With the advancement of both stable interest region detec-
tors [1] and robust and distinctive descriptors [2], local feature-
based image or object retrieval has attracted a great deal of at-
tention. Particularly, it has become applicable to large-scale
databases with a bag-of-visual words (BoVW) framework [3].
Figure 1 illustrates the standard framework of a BoVW-based
image retrieval system. In the BoVW framework, local feature
points or regions are detected from an image, and feature vectors
are extracted from them. These feature vectors are quantized into
visual words (VWs) using a visual codebook (visual vocabulary),
resulting in a histogram representation of VWs. Image similar-
ity is measured by �1 or �2 distance between the normalized his-
tograms. As VW histograms are generally sparse, an inverted
index data structure and a voting function enable an efficient sim-
ilarity search. The equivalency between �2 distances and scores
obtained with the voting function is described in Ref. [4] in de-
tail. A weighting scheme based on inverse document frequency
(IDF) [3], [5] is integrated with the voting function to improve
performance. Finally, geometric verification [6] is performed to
refine and re-rank the results obtained with the voting function.

Although the BoVW framework realizes efficient retrieval,
there is some room for improvement in terms of accuracy. One
significant drawback of VW-based matching is a hard-assignment
problem: two features are considered to be matched if and only
if they are assigned to the same VW [4]. There are two ma-
jor extensions of VW-based matching designed to alleviate this
problem: post-filtering approaches [4], [7] and multiple assign-
ment (or soft assignment) approaches [4], [8]. In post-filtering
approaches, after VW-based matching, unreliable matches are fil-
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tered out according to (estimated) distances between query and
reference features. In multiple assignment approaches, query fea-
tures are matched not only with reference features assigned to the
nearest VW but also with reference features assigned to the k-
nearest VWs.

In this paper, in order to solve these problems, we propose
a new, unified scoring method applicable to many conventional
frameworks. The optimal scoring method is derived by solving
the large-scale image retrieval problem as a classification prob-
lem with a large number of classes. The proposed score is based
on the ratio of the probability density function of an object model
to a background model, which is efficiently calculated in an on-
the-fly manner via nearest neighbor density estimation. In exper-
iments, we show the effectiveness and versatility of the proposed
scoring method by applying it to a BoVW framework and a k-
nearest neighbor voting framework. This paper is the extended
version of the paper [9] that appeared in ICPR 2012. Particu-
larly, we conduct detailed experiments in terms of the parameter
in the proposed method and discuss the effect of normalization
term in the proposed score. Furthermore, the proposed method
is thoroughly compared with original classification method and
state-of-the-art methods.

2. Improving BoVW-based Image Retrieval

In this section, an overview is provided of related work which
improves BoVW-based image retrieval in terms of feature match-
ing and the problems associated with conventional methods are
outlined at the end of this section.

There are two major approaches used to improve the per-
formance of BoVW-based image retrieval in terms of feature
matching: post-filtering approaches and multiple assignment ap-
proaches. Post-filtering and multiple assignment respectively
contributes to the precision and recall of feature matching, and
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Fig. 1 Standard framework of local feature-based image retrieval system.

they are complementary. Both approaches are reviewed in this
section.

Several methods have also been proposed with the intention
of improving the performance of BoVW-based image retrieval
other than the approaches mentioned above such as the utiliza-
tion of spatial information [4], [10], [11], [12], [13], query ex-
pansion approaches [14], [15], [16], and re-ranking based on k-
nearest neighbors [13], [17]. These methods are complementary
to the proposed method and not discussed in detail in this paper.

2.1 Post-filtering Approaches
As the naive BoVW framework suffers from many false

matches of local features, post-filtering approaches are proposed
to suppress unreliable feature matches [4]. In this section, an
overview of post-filtering approaches to improve naive VW-based
image retrieval is presented. There are two important components
of post-filtering approaches: distance estimation and filtering cri-
teria.
2.1.1 Distance Estimation

As mentioned previously, after VW-based matching, distances
between a query feature and reference features that are assigned
to the same visual word as the query feature are estimated for
post-filtering. As distance calculations between an original query
feature vector and original reference feature vectors are undesir-
able in terms of computational cost and memory requirement to
store raw reference feature vectors [18], short code based meth-
ods are used for this purpose. Feature vectors are encoded into
short codes and distances between feature vectors are approxi-
mated by distances between the short codes. This approach im-
proves time efficiency and reduces memory requirement in the
distance calculation. Two different distance estimation methods
are described below.
◦ Hamming embedding (HE): In Refs. [4], [19], feature vec-

tors extracted from reference images are encoded into binary
codes (typically 32–128 bit codes) via random orthogonal
projection followed by thresholding for binarizing projected
vectors. While all VWs share a single random orthogonal
matrix, each VW has individual thresholds so that feature
vectors are binarized into 0 or 1 with the same probabil-
ity. These codes are stored in an inverted index with im-
age identifiers (sometimes with other information on the fea-
tures [19]). In a search step, after VW-based matching, Ham-
ming distances between codes of query and matched refer-

ence features are calculated. Matched features with larger
Hamming than a predefined threshold are filtered out, as this
considerably improves the precision of matching with only
slight degradation of recall.

◦ Product quantization (PQ): In Ref. [18], a product
quantization-based method is proposed and shown to
outperform other short codes like spectral hashing (SH) [20]
or a transform coding-based method [21] in terms of the
trade-off between code length and accuracy in approximate
nearest neighbor search. In the PQ method, a reference fea-
ture vector is decomposed into low-dimensional subvectors.
Subsequently, these subvectors are quantized separately
into a short code, which is composed of corresponding
centroid indices. The distance between a query vector and
a reference vector is approximated by the distance between
a query vector and the short code of a reference vector.
Distance calculation is efficiently performed with a lookup
table. Note that the PQ method directly approximates the
Euclidean distance between a query and reference vector,
while the Hamming distance obtained by the HE method
only reflects their similarity.

2.1.2 Filtering Criteria
Based on the estimated distances described above, unreliable

feature matches are filtered out. There is room for discussion on
how to utilize the distances. To date, several criteria are used for
filtering.
◦ Distance criterion: The most straightforward way is to filter

out reference features with larger (approximated) distances
than the predefined threshold [4], [22].

◦ Rank criterion: The alternative is to use the k-nearest neigh-
bor features in voting and to filter out the others [18]. In
this case, for each feature vector in a query image, reference
features are sorted according to distances between the query
feature and the reference features in ascending order, and
corresponding top-k reference features are used in voting.

◦ Ratio criterion: In the same way as the rank criterion, for each
feature vector in a query image, distances between the query
feature and reference features in the same VW are sorted in
ascending order. Then reference features in the top-p per-
centile are used in voting [7].

2.2 Multiple Assignment Approaches
While post-filtering approaches try to improve the precision of

feature matches with only slight degradation of recall, multiple
assignment approaches improve recall at the cost of the preci-
sion of feature matches. The basic idea here is, at a search step,
to assign a query feature not only to the nearest VW but to the
several nearest VWs. This technique alleviates the problem of
quantization error; sometimes, similar features are assigned to
different VWs. In Ref. [8], each query feature is assigned to the
fixed number of the nearest VWs and the influence of a matched
feature to image similarity is weighted according to the distance
between the query feature and the assigned VWs. In Ref. [4], the
distance d0 to the nearest VW from a query feature is used to
determine the number of multiple assignments, where the query
feature is assigned to the VWs such that the distance to the VWs
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is smaller than αd0 (α = 1.2 in Ref. [4]). This approach adap-
tively changes the number of assigned VWs according to the am-
biguity of the feature. As post-filtering approaches and multiple
assignment approaches are complementary, it is desirable to use
multiple assignment in conjunction with post-filtering.

2.3 Scoring of Feature Matches
After feature matching as described above, scores of feature

matches should be determined to vote the scores to the corre-
sponding reference images. The square of the IDF value asso-
ciated with the corresponding VW is used as a base score [3].
At the same time, weighting terms related to distance met-
rics and filtering criteria are considered for further improve-
ment [4], [7], [23], [24].

In Ref. [23], the weight is calculated as a Gaussian function of
a Hamming distance between the query and reference vector. In
Ref. [4], the weight is calculated based on the Hamming distance
between the query and reference vector and the probability mass
function of the binomial distribution. In Ref. [24], the weight is
calculated based on rank information because a rank criterion is
used in post-filtering in the literature, while in Ref. [7], the weight
is calculated based on ratio information. Thus, as mentioned
before, these scoring methods have been specialized to certain
frameworks, i.e., they depend on distance metrics and filtering
criteria. Hence, they require trial-and-error processes when being
applied to different frameworks. In addition, because these scor-
ing methods have little theoretical basis and are not optimal, they
result in unsatisfactory performance compared with their poten-
tial. Therefore, a comprehensive scoring method is needed that
has a theoretical basis and is applicable to any frameworks with-
out having to consider and try many different scoring methods.

3. Proposed Approach

In this section, in order to solve the problems mentioned be-
fore, a unified scoring method is proposed. The proposed scoring
method is derived by solving the large-scale image retrieval prob-
lem as a classification problem with a large number of classes,
which can be applied to many existing frameworks. We first
present the probabilistic formulation of the proposed scoring
method, starting with a classification problem similar to Ref. [25].
Then, in order to make it applicable to large-scale image retrieval,
an approximation is introduced. Finally, the detailed formulation
of the proposed score is obtained via non-parametric density ratio
estimation.

3.1 Probabilistic Formulation
Given a query image Q, the objective is to find a similar image

Rĵ from a large number of reference images R1, · · · ,Rm. In this
paper, we consider images to be similar if they share a same ob-
ject [26]. Considering it as a classification problem, we start with
maximum-a-posteriori estimation: ĵ = arg max j p(Rj|Q). As-
suming p(Rj) is uniform, the maximum-a-posteriori estimation
reduces to a maximum likelihood estimation:

ĵ = arg max
j

p(Rj|Q) = arg max
j

p(Q|Rj). (1)

Letting Q = {q1, · · · , qn} denote the descriptors of the query im-

age Q, with the naive Bayes assumption, we get:

p(Q|Rj) = p(q1, · · · , qn|Rj) =
n∏

i=1

p(qi|Rj). (2)

As pointed out in Ref. [25], if we assume all query descriptors are
derived from only the object model Oj of Rj, p(Q|Rj) tends to be
too small even if Q and Rj share the same object. In Ref. [25], the
problem is alleviated by estimating p(qi|Rj) using a few dozen im-
ages representing the same class. As this is not practical for large-
scale image or object retrieval, we directly model p(qi|Rj) by a
mixture of the object model Oj of Rj and a background model B

distinct from Oj:

p(qi|Rj) = λp(qi|Oj) + (1 − λ)p(qi|B). (3)

If we deal with only the quantized version of descriptors (visual
words), this is identical to language modeling (LM) [5] in the area
of information retrieval (IR). Combining Eqs. (1)–(3), we obtain:

ĵ = arg max
j

n∏
i=1

p(qi|Rj) = arg max
j

n∑
i=1

log p(qi|Rj)

= arg max
j

n∑
i=1

log(λp(qi|Oj) + (1 − λ)p(qi|B))

= arg max
j

n∑
i=1

log

(
λ

1 − λ
p(qi|Oj)

p(qi|B)
+ 1

)
. (4)

Finally, we get the voting score si j:

si j = log

(
λ

1 − λ
p(qi|Oj)

p(qi|B)
+ 1

)
. (5)

For each qi, the voting score si j is assigned to each Rj. The re-
sulting score s j =

∑
i si j corresponds to the similarity measure

between Q and Rj.

3.2 Approximation with Nearest Neighbors
In the above formulation, it is necessary to calculate si j for all

Rj. Similarly, minr∈R j ||qi − r||2 should be calculated for all Rj

in Ref. [25], where R j denotes a set of descriptors of Rj. These
processes involve finding nearest neighbors of qi from R j for
each Rj. Letting nC denote the number of classes and nD de-
note the average number of descriptors in an image, the calcula-
tion of si j for all Rj has a time cost of O(nC · nD) if brute-force
search is adopted. This can be accelerated from O(nC · nD) to
O(nC · log nD) by using efficient approximate nearest neighbor
search algorithms [18], [27], [28] which can find approximate
nearest neighbors of qi from nD descriptors in O(log nD). The
computational cost does not become a fatal flaw in classification
problems where nD � nC . However, it is intractable in the large-
scale image retrieval problem where nC � nD because nC corre-
sponds to the number of images or objects in a database.

In order to make it tractable, the following simple approxima-
tion is adopted. We assume the set of nearest neighbor descriptors
N(qi) of qi (e.g., k-nearest neighbors of qi) was obtained against
all reference descriptors. Then, p(qi|Oj) is calculated only for
Rj at least one of whose descriptors appears in N(qi), and oth-
erwise we assume p(qi|Oj) = 0. Because the voting score si j
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Fig. 2 An example of multiple levels of neighbors N1(qi), · · · ,Nk(qi) of qi

in the feature space (k = 3).

becomes 0 if p(qi|Oj) = 0, the voting is performed efficiently.
With this approximation, the computational cost is reduced from
O(nC ·log nD) to O(log nC ·nD) because approximate nearest neigh-
bors of qi are searched from nC · nD descriptors only once instead
of searching nearest neighbors from nD descriptors and repeating
nC times.

3.3 Non-parametric Density Ratio Estimation
Finally, the voting score si j is calculated using N(qi). As

shown in Fig. 2, we assume that multiple levels (subsets) of
neighbors N1(qi), · · · ,Nk(qi) of qi are defined, which satisfy

N1(qi) ⊂ N2(qi) ⊂ · · · ⊂ Nk(qi) = N(qi), (6)

whereN1(qi) is the most fine-grained level of neighbors of qi and
Nk(qi) is the most coarse-grained level of neighbors of qi. An
intuitive and practical example of Nt(qi) is the t nearest neighbor
descriptors of qi. For each Nt(qi) (1 ≤ t ≤ k), and for each Rj

one of whose descriptors appears inNt(qi), the densities p(qi|Oj)
and p(qi|B) in Eq. (5) are estimated via k-nearest neighbor density
estimation:

p(qi|Oj) =
|Nt(qi)| j
|R j| · Vt

, p(qi|B) =
|Nt(qi)|all

|Rall| · Vt
. (7)

where |Nt(qi)| j is the number of descriptors of Rj that appear in
Nt(qi), Rall is all reference descriptors

⋃
j R j, Vt is the volume of

a hypersphere with radius
√||qi − r̂t ||2, and r̂t ∈ Nt(qi) is the far-

thest descriptor from qi. Combining Eqs. (5) and (7), we obtain
the score st

i j for Nt(qi):

st
i j = log

(
λ

1 − λ
|Nt(qi)| j/|R j|
|Nt(qi)|all/|Rall| + 1

)
, (8)

where the normalization terms about the numbers of descriptors
in a query image and reference images are naturally considered
as |R j| and |Rall|. We adopt t such that it maximizes st

i j for each qi

and Rj:

si j = max
1≤t≤k

st
i j. (9)

If we adopt fixed t = k, the information of the multiple levels of
neighbors N1(qi), · · · ,Nk(qi) is discarded and only the informa-
tion of the most coarse-grained level of neighbors Nk(qi) is used,
resulting in the degradation of accuracy. For instance, in Fig. 2,
we assume that the two blue cross marks represent the descrip-
tors of R1 and the two red cross marks represent the descriptors
of R2. Intuitively, an inequality p(qi|O1) > p(qi|O2) holds. If we

Fig. 3 Overview of the improved BoVW framework based on product
quantization.

adopt the definition of Eq. (9), t = 1 is selected for R1 and t = 3 is
selected for R2, resulting in distinctive scores si1 > si2. However,
if fixed t = 3 is used for both of R1 and R2, si1 becomes equal to
si2. The effect of Eq. (9) is empirically evaluated in Section 5.2.

More concrete examples of the formulation are shown in the
following section. One advantage of this scoring method is that
an up-to-date score is efficiently calculated in an on-the-fly man-
ner using N(qi), even if the database is modified. The only re-
quirement is to store the number of descriptors |R j| in each refer-
ence image.

4. Implementation Details

Although the proposed scoring method described in Section 3
can be applied to many conventional frameworks by appropri-
ately defining the nearest neighbors N1(qi), · · · ,Nk(qi) = N(qi)
of qi, we mainly apply the proposed method to one of the state-of-
the-art frameworks (described in Section 2) which improves the
BoVW framework by having distance estimation based on prod-
uct quantization [7], [18]. In this section, we describe the frame-
work evaluated in the experiments in detail. Figure 3 provides an
overview of the framework.

4.1 Feature Detection and Description
From query and reference images, a set of feature vectors is ex-

tracted. We adopt Hessian-Affine [29] and SIFT [30] as the fea-
ture detector and descriptor, respectively. The software *1 pro-
vided by the authors of Ref. [1] is used in the experiments. We
denote the i-th feature vector of the query image by qi ∈ Q and
the h-th feature vector of the j-th reference image by r jh ∈ R j.

4.2 Feature Indexing with Product Quantization
We adopt a product quantization-based method [7], [18] to im-

prove the BoVW framework, namely IVFADC. In the indexing
(off-line) step in IVFADC, a reference vector r jh with d dimen-
sion *2 is quantized with a coarse quantizer in the same way as
the BoVW framework. We refer to the codebook used in coarse
quantization as the CQ codebook. This is the same as what is

*1 http://www.featurespace.org/
*2 In the case of SIFT vectors, d = 128.
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referred to as visual words or a visual codebook in the context of
BoVW-based image retrieval or recognition.

In the indexing step, a reference vector r jh is first quantized into
câ using the CQ codebook C with k′ centroids c1, · · · , ck′ ∈ Rd,
where

â = arg min
1≤a≤k′

||r jh − ca||2. (10)

Subsequently, the residual vector r̄ jh from the corresponding cen-
troid câ is calculated as

r̄ jh = r jh − câ. (11)

Then, the residual vector r̄ jh is decomposed into u subvectors
r̄1

jh, · · · , r̄u
jh ∈ Rd∗ , where d∗ = d/u. Subsequently, these sub-

vectors are quantized separately using u codebooks P1, · · · , Pu,
which is referred to as product quantization. In this paper, a code-
book used in product quantization is referred to as a PQ code-
book. We assume that each PQ codebook Pl has k∗ centroids
pl1, · · · plk∗ ∈ Rd∗ . Using the l-th PQ codebook, the l-th subvector
r̄l

jh is quantized into plbl , where

bl = arg min
1≤b≤k∗

||r̄l
jh − plb||2. (12)

Finally, the short code (b1, · · · , bu) is stored in the â-th list of the
inverted index with the identifier j of the reference image. The
size of the short code is represented by u log2 k∗ bits.

4.3 Distance Calculation in IVFADC
In the search step in IVFADC, a query vector qi is first quan-

tized using the CQ codebook, and the residual vector q̄i from the
corresponding centroid is calculated in the same manner as the
indexing. Subsequently, the distance between the residual vec-
tor q̄i and short codes (b1, · · · , bu) in the corresponding list in the
inverted index are calculated. These distances correspond to the
approximate distances between the query vector qi and the refer-
ence vectors r jh:

d(qi, r jh) = d(q̄i, r̄ jh) ≈
√√

u∑
l=1

||q̄l
i − plbl ||2. (13)

This distance calculation is performed efficiently using a lookup
table T , which is precomputed when a query vector qi is given:

Tlb = ||q̄l
i − plb||2 (1 ≤ l ≤ u, 1 ≤ b ≤ k∗). (14)

Using the table, Eq. (13) is rewritten as

d(qi, r jh) ≈
√√

u∑
l=1

Tlbl . (15)

4.4 Voting with the Proposed Scoring Method
After the distance calculation described in Section 4.3, pairs of

image identifier and distance are obtained. These pairs are sorted
according to the distances and top-k results are used to calculate
the proposed score described in Section 3 in voting. In this case,
the t-th subsetNt(qi) in Eq. (6) is defined as t nearest vectors of qi.
In this paper, we refer to this framework as the k-nearest neighbor
(k-NN) voting framework. The voting algorithm is summarized

Algorithm 1 k-NN voting function with the proposed score
Require: Q = {qi}ni=1, {R j}mj=1

Ensure: s j ← similarity score between Q and R j (1 ≤ j ≤ m)

1: s1, · · · , sm ← 0

2: for i = 1 to n do

3: z1, · · · , zm ← 0

4: c1, · · · , cm ← 0

5: r1, · · · , rk ← (approximate) k nearest vectors of qi among {R j}mj=1

6: for t = 1 to k do

7: jt ← the reference identifier associated with rt

8: c jt ← c jt + 1

9: if v jt < c jt /t then

10: v jt ← c jt /t

11: end if

12: end for

13: for j = 1 to m do

14: s j ← s j + log(α jz j + 1)

15: end for

16: end for

Table 1 Summary of different versions of the proposed method.

Section Voting framework Nt(qi)
§5.2 BoVW A set of reference descriptors that

are quantized into one of t nearest
VWs of qi.

§5.3 Improved BoVW A set of t nearest reference descrip-
tors of qi.

§5.4 k-NN A set of t nearest reference descrip-
tors of qi.

in Algorithm 1.
In Algorithm 1, given query vectors Q and reference vectors

R1, · · · ,Rm, similarity scores s1, · · · , sm between a query image
Q and reference images R1, · · · ,Rm are obtained. For each query
vector qi, k-nearest vectors r1, · · · , rk of qi are obtained in Line 5.
In Lines 6–12, maxt |Nt(qi)| j/|Nt(qi)|all in Eq. (8) is obtained as z j,
where |Nt(qi)| j = c j and |Nt(qi)|all = t. In Line 14, the proposed
score is calculated and voted to the reference image Rj, where α j

is precomputed using constant values in Eq. (8) for efficiency:

α j =
λ

1 − λ
1/|R j|
1/|Rall| . (16)

Algorithm 1 is applicable not only to product quantization-based
approximate nearest neighbor search but also applicable to any
(approximate) nearest neighbor search algorithms such as local-
ity sensitive hashing [31] as shown in Section 5.4.

In this paper, the parameters recommended in Ref. [18] are
used; the size of the CQ and PQ codebooks k′ and k∗ are set to
20,000 and 256 respectively, and the number of vector decompo-
sition u is set to 8.

5. Experimental Evaluation

In this section, we show the effectiveness and versatility of the
proposed scoring method by applying it to the BoVW framework
(Section 5.2), the improved BoVW framework (Section 5.3),
and the locality sensitive hashing-based k-NN voting framework
(Section 5.4). Table 1 summarizes the different versions of the
proposed method evaluated in the experiments.
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5.1 Experimental Setup
In the experiments, three distinct publically available datasets

are used. The details of these datasets are summarized as follows.
◦ Kentucky: The University of Kentucky recognition bench-

mark dataset *3 is provided by the authors of Ref. [26]. It
includes 2,550 different objects or scenes. Each of these ob-
jects is represented by four images taken from four different
angles, making 10,200 images in all. These images are used
as both reference and query images. This dataset is used in
Sections 5.2 and 5.3, focusing on large-scale image retrieval.

◦ Stanford MVS: The Stanford mobile visual search dataset *4

contains camera-phone images of products, CDs, books, out-
door landmarks, business cards, text documents, museum
paintings and video clips. While it includes eight classes
of images, we use CD class images in this paper. These im-
ages consist of 100 reference images and 400 query images.
In the experiments, all images are resized so that the long
sides of images are less than 640 pixels, keeping the original
aspect ratio. This dataset is used in Section 5.4, focusing on
image recognition on mobile phones.

◦ MIRFLICKR-1M: The MIR Flickr collection *5 is provided
by the authors of Ref. [32]. It includes 1 million images
downloaded from the social photography site FlickrTM. We
use this dataset as a distractor set in order to confirm the
scalability of the proposed method in Sections 5.3 and 5.4.

Figure 4 shows sample images from the three datasets.
As an indicator of retrieval performance, mean average preci-

sion (MAP) [4], [26] is used. For each query, a precision-recall
curve is obtained based on the retrieval results. Average precision
is calculated as the area under the precision-recall curve. Finally,
the MAP score is calculated as the mean of average precisions
over all queries. Because the applications of the proposed method
only modify the scoring part of the conventional frameworks, the
computational cost and database size of the proposed method is
theoretically the same as the conventional methods. Therefore,
in the experiments, we focus on the evaluations of the proposed
scoring method in terms of accuracy.

5.2 Application to the BoVW Framework
In order to show the effectiveness and versatility of the pro-

posed scoring method, first it is applied to the standard BoVW
framework [3]. In this case, a set of the nearest neighbor descrip-
torsN(qi) of qi is defined as a set of reference descriptors that are
quantized into the same VW as qi. As subsets ofN(qi) in Eq. (6),
only a single subset (k = 1) is defined:

N(qi) = N1(qi) = {r ∈ Rall | q(r) = q(qi)}, (17)

where q(r) and q(qi) denote the identifiers of the nearest neighbor
VWs of r and qi. Then, si j is calculated using only frequencies of
VWs:

si j = log

⎛⎜⎜⎜⎜⎜⎜⎝ λ1 − λ
tf q(qi)

j /|R j|
tf q(qi)

all /|Rall|
+ 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (18)

*3 http://www.vis.uky.edu/˜stewe/ukbench/
*4 http://www.stanford.edu/˜dmchen/mvs.html
*5 http://press.liacs.nl/mirflickr/

(a) Kentucky dataset. Images in each row represent the same object.

(b) Stanford MVS dataset. Images in the top row are examples of reference

images and images in the bottom row are examples of query images.

(c) MIRFLICKR-1M dataset.

Fig. 4 Example images from three datasets used in the experiments.

Fig. 5 Comparison of scoring methods in the BoVW framework.

where tf wj represents the frequency of the w-th VW in Rj, and tf wall

the frequency of the w-th VW in all reference images.
The above proposed score si j is evaluated using the Kentucky

dataset. Figure 5 shows the MAP scores obtained with differ-
ent scoring methods as a function of λ (valid only for the pro-
posed method). The following three scoring methods are com-

pared: (1) Baseline uses normalized frequency tf q(qi)
j /

√∑
w(tf wj )2

of q(qi)-th VW, (2) IDF uses IDF weighted frequency tf q(qi)
j ·

(idf q(qi))2/
√∑

w(tf wj · idf w)2, and (3) Prop uses si j in Eq. (18) as a
voting score, respectively. The IDF weight of the w-th VW is cal-
culated according to the number of all reference images and the
number of reference images which have at least one descriptor
assigned to the w-th VW:
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Table 2 Comparisons of the proposed method with the IDF method.

(a) Best 5 objects.

Object ID Prop IDF Diff. #descriptors
466 0.888 0.484 +0.404 304
631 1.0 0.604 +0.396 1,828
2068 0.942 0.559 +0.383 973
1741 0.954 0.574 +0.380 386
1315 0.869 0.491 +0.378 1,698

(b) Worst 5 objects.

Object ID Prop IDF Diff. #descriptors
1820 0.523 0.986 −0.463 4,358
2297 0.582 1.0 −0.418 4,238
2331 0.534 0.911 −0.377 4,316
1828 0.585 0.865 −0.280 4,758
2184 0.582 0.818 −0.236 3,708

idf w = log
|{Rj}|

|{Rj | tf wj > 0}| . (19)

Although the IDF weighting significantly improves the accuracy
of the baseline scoring method, the proposed method achieves
further improvement. In addition, the accuracy is not so sensitive
to the choice of λ. The best MAP score of 0.814 is achieved with
relatively small λ (λ = 0.07), which implies that there are a small
number of features useful for object recognition [33]. Object-
wise MAPs are also calculated for 2,550 objects. Table 2 sum-
marizes (a) the best 5 objects and (b) the worst 5 objects of the
proposed method compared with the IDF method. In the table,
object identifiers, the MAP scores of the proposed method and
the IDF method, the differences of them, and the average numbers
of descriptors are shown. We found that the proposed method
performs better than the IDF method for objects with small num-
bers of descriptors, while worse for objects with large numbers
of descriptors; on average, the proposed method outperforms the
IDF method. This is related to the normalization terms associ-
ated with the number of descriptors |R j| of a reference image: in
the proposed method, each score is approximately proportional
to log(C/|R j| + 1) according to Eq. (8) or Eq. (18), while, in the
case of the IDF method with �2 normalization, each score is ap-
proximately proportional to |R j|−1/2. Figure 6 shows the graph
of y = log(2,000/x + 1)/x−1/2, which represents the ratio of the
score in the proposed method to the score in the IDF method as a
function of the number of descriptors in a reference image *6. The
scores of the proposed method are relatively small compared with
the IDF method for images with large numbers of descriptors.

In the BoVW framework, the proposed scoring method can be
used in conjunction with the multiple assignment approaches de-
scribed in Section 2.2. For simplicity, we adopt a fixed number
k for multiple assignment. In this case, the t-th subset Nt(qi) in
Eq. (6) is defined as a set of reference descriptors that are assigned
to one of the t nearest VWs of qi:

Nt(qi) =
⋃

1≤s≤t

{r ∈ Rall | q(r) = qs(qi)}, (20)

where qs(qi) denotes the identifier of the s-th nearest VW of

*6 We assume that λ = 0.1, tf q(qi)
j = 1, and tf q(qi)

all /|Rall | = 1/20,000 in

Eq. (18), resulting C � 2,000. The term tf q(qi)
all /|Rall | is approximately

equal to the probability 1/k′ with which a descriptor is assigned to a cer-
tain visual word, where k′(= 20,000) is the number of the visual words.

Fig. 6 The ratio of the score in the proposed method to the score in the IDF
method as a function of the number of descriptors in a reference im-
age. The average number of descriptors in the Kentucky dataset is
about 1,700.

Fig. 7 Evaluation of the proposed scoring method under different settings.

qi. Figure 7 shows the MAP scores obtained with the proposed
scoring method with different settings as a function of λ. Prop,
Propmaxk = 3, and Propmaxk = 5 represent the results of the pro-
posed scoring methods where k is respectively 1, 3, and 5. We
can see that the proposed scoring method is effective even if it is
used in conjunction with multiple assignment approaches. The
best MAP score is improved from 0.814 (k = 1, λ = 0.07) to
0.838 (k = 3, λ = 0.1) and 0.846 (k = 5, λ = 0.1).

In Fig. 7, the modified version of the proposed scoring method
is also compared. Propfixed uses the fixed t = k in the calcu-
lation of the proposed score; the score is defined as si j = sk

i j

instead of the original definition si j = max1≤t≤k st
i j in Eq. (9).

However, in this case, the degree of improvement attained by
multiple assignment is not significant compared with the orig-
inal scoring method. The best MAP scores of Propfixedk = 3
and Propfixedk = 5 are 0.823 (λ = 0.1) and 0.825 (λ = 0.1), re-
spectively. This is because, if the fixed t = k is used, the useful
information of the multiple subsets N1(qi), · · · ,Nk(qi) cannot be
exploited.

5.3 Application to the improved BoVW Framework
In this section, the proposed scoring method is applied to the

improved BoVW framework described in Section 4, and com-
pared with the conventional methods.

Figure 8 (a) shows a comparison of scoring methods in the ap-
proximate k-NN voting framework. These methods differ only
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(a) Accuracy as a function of λ. (b) Accuracy as a function of k. (c) Accuracy as a function of p.

Fig. 8 Comparison of scoring methods in the approximate k-NN voting framework.

Fig. 9 The distributions of the proposed scores.

in terms of scoring; in other respects, they are the same as the
proposed system described in Sections 4.1–4.3. First, the fol-
lowing four methods are considered: (1) IDF [18] votes the IDF
scores to the top-k reference images (k = 6), (2) IDF [7] votes
the IDF scores to the top-p percent reference images instead of
the top-k (p = 0.03), (3) IDF+weight [7] votes the scores of
idf 2 · exp(−p2/σ2) to the top-p percent reference images (p =

0.05, σ = 0.05), and (4) Prop votes the proposed scores described
in Algorithm 1 to the top-k reference images (k = 24). Parameters
used in these methods are optimized with a grid search in param-
eter space. It is shown that the accuracy is significantly improved
by using the proposed scoring method instead of IDF scoring,
even if the IDF score is corrected with ratio information [7]. The
proposed scoring method achieves the best MAP score of 0.884
with λ = 0.002. Figure 8 (b) shows the accuracy of Prop with
λ = 0.002 and IDF [18] as a function of k, and Fig. 8 (c) shows
the accuracy of IDF [7] and IDF+weight [7] as a function of p. We
can see that the accuracy of the scoring methods without weight-
ing (IDF [18] and IDF [7]) decreases if k or p is set to a large
value, while the accuracy of the scoring methods with weight-
ing (Prop and IDF+weight [7]) monotonically increases as k or p

increases. Although optimal λ in Fig. 8 (a) is different from that
in Fig. 5 and in Fig. 7, we found that resulting scores are similar.
Figure 9 shows the distributions of the proposed score with the
BoVW framework (λ = 0.1) and that with the improved BoVW
framework (λ = 0.002). Average scores are about 1.0 (0.744 in
the BoVW framework and 1.112 in the improved BoVW frame-
work). When λ is small (e.g., λ = 0.002), it may seem that Eq. (3)
reduces to p(qi|Rj) = p(qi|B). However, the first term λp(qi|Oj)
in Eq. (3) is not negligible because p(qi|Oj) is relatively larger

Table 3 Comparisons with state-of-the-art methods.

(a) MAP and KS of the proposed method.

Prop Prop+MA3 Prop+MA5 Prop+MA5+RS
MAP 0.884 0.896 0.899 0.912
KS 3.43 3.48 3.49 3.55

(b) KS of state-of-the-art methods.
Ref. [13] Ref. [13]+ Ref. [12] Ref. [11] Ref. [6] Ref. [17] Ref. [23]

KS 3.52 3.56 3.26 3.29 3.45 3.67 3.64

than p(qi|B); assuming |Nt(qi)| j = 1, |Nt(qi)|all = k = 20, and
|Rall|/|R j| = 10,000 in Eq. (7), then p(qi|Oj)/p(qi|B) = 500. Note
that |Rall|/|R j| is approximately equal to the number of reference
images.

In Fig. 8, the proposed scoring method is also evaluated in con-
junction with a fixed number of multiple assignments [8] with
the number of assignments being either 3 (Prop+MA3) or 5
(Prop+MA5), where several number of lists corresponding to the
nearest VWs of qi in the inverted index are searched. In this case,
multiple assignment simply improves the accuracy (recall) of the
k-nearest neighbor search results in product quantization-based
nearest neighbor search. The best MAP score of the proposed
scoring method is improved from 0.884 to 0.896 (Prop+MA3)
and 0.899 (Prop+MA5).

In order to compare the proposed method with state-of-the-
art methods, the proposed method is evaluated in terms of Ken-
tucky score (KS), which is the average number of relevant im-
ages in the query’s top 4 retrieved images as in Ref. [26]. We
also evaluate the proposed method with RootSIFT (RS) descrip-
tor [16] as Prop+MA5+RS, where each SIFT descriptor is sim-
ply �1-normalized and each element is square rooted. Table 3
shows the comparisons of the proposed method with state-of-
the-art methods. Although the proposed method does not utilize
any geometric information nor depend on re-ranking approach, it
achieves comparable or even better results than the state-of-the-
art methods. We also evaluated the original naive-bayes nearest-
neighbor (NBNN) method [25]. The NBNN method achieved a
MAP score of 0.800 even if exact nearest neighbor distances are
used. This result comes from the fact that only a single train-
ing image is available for each class in image retrieval problems,
where the NBNN classifier reduces to a nearest-neighbor-image
(NN-image) classifier [25]. In terms of efficiency, the NBNN
method with approximate nearest neighbor search [27] requires
0.035 seconds to calculate a distance between a query image and a
reference image; the NBNN method takes 357 seconds per query
against the Kentucky dataset which consists of 10,200 images,
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Fig. 10 Comparison of the proposed scoring method using different sizes of
the dataset.

while the proposed method takes 0.66 seconds per query. Pro-
cessing times were measured using a program with a single thread
on a machine with a Core i7 970 CPU.

Finally, we confirm the scalability of the proposed scoring
method by adding the MIRFLICKR-1M dataset as a distractor.
Figure 10 shows the MAP scores obtained by the proposed scor-
ing method with λ = 0.002 as a function of the number k of near-
est neighbors. The following four sizes of the dataset are eval-
uated; Kentucky corresponds to Prop in Fig. 8 (b), where only
the Kentucky dataset is used in the evaluation. Kentucky+10K,
Kentucky+100K, and Kentucky+1M represents the results of the
proposed method, where 10 K, 100 K, and 1 M images out of the
MIRFLICKR-1M dataset are added to the Kentucky dataset as
a distractor. We can see that the proposed scoring method re-
quires relatively large k to obtain adequate results when the size
of the dataset is increased. This is because the error caused by
the approximation introduced in Section 3.2 is increased as the
size of the dataset is increased. However, the degradation of the
accuracy caused by the increase of dataset is relatively small com-
pared with conventional methods. In the case of the conventional
method [7], if the 1 M distractor images are added, the MAP score
declines from 0.845 to 0.757 [7], which corresponds to 10.4%
degradation. Meanwhile, in the case of the proposed method,
the MAP score declines from 0.885 to 0.852 (k = 200), which
corresponds to only 3.7% degradation. It can be said that the
effectiveness of the proposed scoring method becomes more sig-
nificant when the database size is increased. This is because the
background model p(qi|B) is taken into account in the proposed
scoring method, where the accuracy of k-nearest neighbor density
estimation is improved as the number of samples is increased.

5.4 Application to a Different Framework
In this section, the proposed scoring method is evaluated under

quite different settings from those in Sections 5.2 and 5.3: a dif-
ferent feature extraction method, approximate nearest neighbor
search method, and dataset are used. Considering image recog-
nition applications on mobile devices, the following settings are
used.

For feature extraction, we adopt ORB [34], which utilizes
multi-scale FAST detector [35] and oriented BREIF descrip-
tor [36]. Because ORB realizes very fast detection and descrip-

Fig. 11 MAP as a function of the number k of nearest neighbors used in
voting.

tion, it even works on mobile phones. The implementation of the
OpenCV library *7 is used in the experiment. Up to 500 ORB
features are extracted from three scales. For approximate nearest
neighbor search to get top-k descriptors, locality sensitive hash-
ing [31] is used, where the number of hash tables and the size of
the hash key is set to 20 and 210, respectively. For the dataset,
we use the CD class images from the Stanford MVS dataset. The
Stanford MVS dataset is designed to be used for the evaluation of
visual recognition systems on mobile devices.

Figure 11 compares the proposed scoring method in Algo-
rithm 1 with the baseline method, which votes a score of 1.0 to
reference images corresponding to the top-k nearest neighbor de-
scriptors of qi. In the figure, the proposed method achieves better
accuracy than the baseline method for all k. The two methods
are also evaluated using a larger dataset, which consists of the
CD class images and 1,000 images from the MIRFLICKR-1M
dataset. If the 1 K images are added as a distractor, the best MAP
score of Baseline declines from 0.750 to 0.635 (15.3% degra-
dation), while the best MAP score of Prop declines from 0.793
to 0.755 (4.8% degradation *8). The proposed scoring method is
more effective in the larger dataset, which is consistent with the
results in Section 5.3.

6. Conclusion

In this paper, we have proposed a new, effective, and unified
scoring method for local feature-based image retrieval. The pro-
posed scoring method has been derived by solving the large-scale
image retrieval problem as a classification problem with a large
number of classes. The resulting proposed score is based on the
ratio of the probability density function of an object model to that
of a background model, which is efficiently calculated via nearest
neighbor density estimation. The effectiveness of the proposed
method was confirmed by applying it to a standard and improved
bag-of-visual words-based framework and a k-nearest neighbor
voting framework. The proposed method can also be used in
conjunction with many other methods such as hierarchical vocab-
ulary [26] or learned vocabulary [37], where the matched descrip-
tors can be ordered. As a future research topic, we are interested

*7 http://opencv.org/
*8 This degradation is relatively larger than that in Fig. 10. It is probably

due to the difference in the discriminative power of the SIFT and ORB
descriptors.
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in the application of the proposed method to other modalities such
audio and structured data.
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